数据来源见前边的几篇随笔
对其中的一列排序
data.high.sort_values(ascending=False) data.high.sort_values(ascending=True) data['high'].sort_values(ascending=False) data['high'].sort_values(ascending=True)
p = data.high.sort_values()
print(p)
date 2015-01-05 11.39 2015-01-06 11.66 2015-01-09 11.71 2015-01-08 11.92 2015-01-07 11.99 Name: high, dtype: float64
可以看到返回的是一个Series
我们也可以对整个DataFrame进行排序
t = data.sort_values(['high', 'low'],ascending=True) print(t)
优先按high排序,high有相同的,按lower排序
open high close low volume price_change p_change \ date 2015-01-05 11.16 11.39 11.26 10.89 46383.57 0.14 1.26 2015-01-06 11.13 11.66 11.61 11.03 59199.93 0.35 3.11 2015-01-09 11.68 11.71 11.23 11.19 44851.56 -0.44 -3.77 2015-01-08 11.70 11.92 11.67 11.64 56845.71 -0.25 -2.10 2015-01-07 11.58 11.99 11.92 11.48 86681.38 0.31 2.67 ma5 ma10 ma20 v_ma5 v_ma10 v_ma20 turnover date 2015-01-05 11.156 11.212 11.370 58648.75 68429.87 100765.24 1.59 2015-01-06 11.182 11.155 11.382 54854.38 63401.05 98686.98 2.03 2015-01-09 11.538 11.363 11.682 58792.43 60665.93 107924.27 1.54 2015-01-08 11.516 11.349 11.647 57268.99 61376.00 105823.50 1.95 2015-01-07 11.366 11.251 11.543 55049.74 61628.07 103010.58 2.97