Princeton Algorithm 8 Puzzle
普林斯顿大学算法课第 4 次作业,8 Puzzle 问题。
这道题目使用了 A* 算法,题目本身就是有点难度的,但是 Specification 里面已经把该算法的步骤都列出来了,基本就是一个优先级队列的使用。而优先级队列也可以使用提供的 MinPQ
完成,所以基本没有难度。
本题的难点依旧在于优化。
Board 的代码还是相对容易的,主要是注意 euqals 必须满足几个特性,并且距离可以做一次缓存。
Solver 我写了一个内部类来用作搜索结点,用结点之间的父亲节点来表示搜索的路径,这样当出现目标局面的时候,逐层沿着 parent 向上就可以得到整条操作路径。
注意 distance
和 priority
必须缓存,这是一个多达 25 个测试点的优化项目。
另外通过实测可以发现 Manhattan Priority
更加好,所以直接采用这个方案就可以了。
有一个 Breaking tie 的技巧:
Using Manhattan() as a tie-breaker helped a lot.
Using Manhattan priority, then using Manhattan() to break the tie if two boards tie, and returning 0 if both measurements tie.
Solver 可以在构造的时候直接跑出结果,然后缓存,否则没有执行过 solution()
的话,moves()
和 solvable
也拿不到。
有一个非常关键的地方在于不要添加重复的状态进入 PQ。
node.getParent() == null || !bb.equals(node.getParent().getBoard())
对于判断是不是可解的,可以将 board
和 board.twin()
一起加入 PQ,两个状态一起做 A* 搜索,要么是棋盘本身,要么是棋盘的双胞胎,总有一个会做到 isGoal()
。
一旦有任何一者达到目标局面,就说明这一个情况是可解的,那么另一方就是不可解的。通过判断可解的是自己,还是自己的双胞胎,可以得到 solvable
。
注意当且仅当 solvable
的时候才会有 moves()
和 solution()
,所以对于不可解的状态,注意不要把它的双胞胎的 moves
和 solution
赋值过来。
// To implement the A* algorithm, you must use the MinPQ data type for the priority queue.
MinPQ<GameTreeNode> pq = new MinPQ<>();
// 把当前状态和双胞胎状态一起压入队列,做 A* 搜索
pq.insert(new GameTreeNode(initial, false));
pq.insert(new GameTreeNode(initial.twin(), true));
GameTreeNode node = pq.delMin();
Board b = node.getBoard();
// 要么是棋盘本身,要么是棋盘的双胞胎,总有一个会做到 isGoal()
while (!b.isGoal()) {
for (Board bb : b.neighbors()) {
// The critical optimization.
// A* search has one annoying feature: search nodes corresponding to the same board are enqueued on the priority queue many times.
// To reduce unnecessary exploration of useless search nodes, when considering the neighbors of a search node, don’t enqueue a neighbor if its board is the same as the board of the previous search node in the game tree.
if (node.getParent() == null || !bb.equals(node.getParent().getBoard())) {
pq.insert(new GameTreeNode(bb, node));
}
}
// 理论上这里 pq 永远不可能为空
node = pq.delMin();
b = node.getBoard();
}
// 如果是自己做出了结果,那么就是可解的,如果是双胞胎做出了结果,那么就是不可解的
solvable = !node.isTwin();
if (!solvable) {
// 注意不可解的地图,moves 是 -1,solution 是 null
moves = -1;
solution = null;
} else {
// 遍历,沿着 parent 走上去
ArrayList<Board> list = new ArrayList<>();
while (node != null) {
list.add(node.getBoard());
node = node.getParent();
}
// 有多少个状态,减 1 就是操作次数
moves = list.size() - 1;
// 做一次反转
Collections.reverse(list);
solution = list;
}
这段代码得了 99 分,应该已经秒杀了 Coursera 上绝大多数的提交了。
这次 Assignment 的及格线是 80 分,应该说只要正确性达标,内存和时间做的差些,90 分还是可以有的。
主要可能还是有些细节的地方没有优化到,MinPQ Operation Count
和 Board Operation Count
这两个测试有部分测试数据没过,应该是哪里还能省掉几次调用。但是在整体的运行时间上,只有 2 个测试数据超过了 1 秒,分别为 1.25 秒和 1.29 秒,其余测试点均在 0.X 秒就完成了,远小于测试规定的 5 秒以内。
Compilation: PASSED
API: PASSED
Spotbugs: PASSED
PMD: PASSED
Checkstyle: PASSED
Correctness: 51/51 tests passed
Memory: 22/22 tests passed
Timing: 116/125 tests passed
以下代码获得 99 分
import java.util.ArrayList;
import java.util.Arrays;
public class Board {
private final int[][] tiles;
private final int n;
// 缓存每一个位置的距离,需要的时候可以不用每次都重新遍历计算
private final int hamming;
private final int manhattan;
// create a board from an n-by-n array of tiles,
// where tiles[row][col] = tile at (row, col)
public Board(int[][] tiles) {
n = tiles.length;
this.tiles = new int[n][n];
int hammingSum = 0;
int manhattanSum = 0;
// 复制值,而不是令 this.tiles = tiles,确保 Immutable
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
this.tiles[i][j] = tiles[i][j];
// 反正这里都是要遍历一遍的,不如直接把空格位置记录下来,方便后面查找,就不需要再遍历去找那个 0 了
if (tiles[i][j] != 0) {
// 这里根据定义,空位 0 是不需要再加到距离上的
// 顺便也一起做了 cache
// 这是 hamming 的,计算 shouldAt 和 nowAt 是不是相等
// 应该在的位置就是自己的数值(由于下标从 0 开始,减 1),如果是空位,就在最后
int targetAt = tiles[i][j] - 1;
// 这是现在在的位置,把二维的转化为一维的
int nowAt = i * n + j;
hammingSum += targetAt != nowAt ? 1 : 0;
// 这是 manhattan 的,计算横纵坐标距离差的绝对值的和
int vertical = Math.abs(i - targetAt / n);
int horizontal = Math.abs(j - targetAt % n);
manhattanSum += vertical + horizontal;
}
}
}
hamming = hammingSum;
manhattan = manhattanSum;
}
// string representation of this board
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(n).append("\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
sb.append(tiles[i][j]).append(" ");
}
sb.append("\n");
}
return sb.toString();
}
// board dimension n
public int dimension() {
return n;
}
// number of tiles out of place
public int hamming() {
return hamming;
}
// sum of Manhattan distances between tiles and goal
public int manhattan() {
return manhattan;
}
// is this board the goal board?
public boolean isGoal() {
return hamming() == 0;
}
// does this board equal y?
@Override
public boolean equals(Object y) {
// The equals() method is inherited from java.lang.Object, so it must obey all of Java’s requirements.
if (y == null) {
return false;
}
if (this == y) {
return true;
}
if (y.getClass() != this.getClass()) {
return false;
}
Board board = (Board) y;
// 这里二维数组的相等做 deepEquals
return Arrays.deepEquals(tiles, board.tiles);
}
// 本题不允许重写 hashCode()
// all neighboring boards
public Iterable<Board> neighbors() {
ArrayList<Board> neighbors = new ArrayList<>();
int x = 0, y = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (tiles[i][j] == 0) {
x = i;
y = j;
}
}
}
int[][] directions = {
{
-1, 0}, {
0, -1}, {
0, 1}, {
1, 0}};
for (int[] direction : directions) {
int xx = x + direction[0];
int yy = y + direction[1];
if (isValid(xx, yy)) {
neighbors.add(new Board(swap(x, y, xx, yy)));
}
}
return neighbors;
}
// 判断是否越界
private boolean isValid(int x, int y) {
return x >= 0 && x < n && y >= 0 && y < n;
}
// 复制数组并交换指定位置
private int[][] swap(int x, int y, int xx, int yy) {
int[][] newTiles = new int[n][n];
for (int i = 0; i < n; i++) {
System.arraycopy(tiles[i], 0, newTiles[i], 0, n);
}
int tmp = newTiles[x][y];
newTiles[x][y] = newTiles[xx][yy];
newTiles[xx][yy] = tmp;
return newTiles;
}
// a board that is obtained by exchanging any pair of tiles
public Board twin() {
Board b = null;
// 随便找两个相邻的位置就可以了,只要不越界,只要不是 0,就可以交换
for (int i = 0; i < n * n - 1; i++) {
int x = i / n;
int y = i % n;
int xx = (i + 1) / n;
int yy = (i + 1) % n;
if (tiles[x][y] != 0 && tiles[xx][yy] != 0) {
b = new Board(swap(x, y, xx, yy));
break;
}
}
return b;
}
// unit testing (not graded)
public static void main(String[] args) {
int[][] t = {
{
1, 2, 3}, {
4, 5, 0}, {
8, 7, 6}};
Board b = new Board(t);
// System.out.println(b.dimension());
// System.out.println(b);
// System.out.println(b.hamming());
// System.out.println(b.manhattan());
// System.out.println(b.isGoal());
// System.out.println(b.twin());
// System.out.println(b.equals(b.twin()));
for (Board bb : b.neighbors()) {
System.out.println(bb);
}
}
}
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.MinPQ;
import edu.princeton.cs.algs4.StdOut;
import java.util.ArrayList;
import java.util.Collections;
public class Solver {
// 定义一个搜索树,方便进行 A* 搜索
// 搜索树的结点,递归的定义
private static class GameTreeNode implements Comparable<GameTreeNode> {
private final Board board; // 结点
private final GameTreeNode parent; // 父亲
private final boolean twin;
private final int moves;
// Caching the Hamming and Manhattan priorities.
// To avoid recomputing the Manhattan priority of a search node from scratch each time during various priority queue operations, pre-compute its value when you construct the search node;
// save it in an instance variable; and return the saved value as needed.
// This caching technique is broadly applicable:
// consider using it in any situation where you are recomputing the same quantity many times and for which computing that quantity is a bottleneck operation.
//
// rejecting if doesn't adhere to stricter caching limits
private final int distance;
// The efficacy of this approach hinges on the choice of priority function for a search node.
// We consider two priority functions:
//
// The Hamming priority function is the Hamming distance of a board plus the number of moves made so far to get to the search node.
// Intuitively, a search node with a small number of tiles in the wrong position is close to the goal, and we prefer a search node if has been reached using a small number of moves.
//
// The Manhattan priority function is the Manhattan distance of a board plus the number of moves made so far to get to the search node.
private final int priority;
// 初始节点,parent 为 null,需要区分是不是双胞胎
public GameTreeNode(Board board, boolean twin) {
this.board = board;
parent = null;
this.twin = twin;
moves = 0;
distance = board.manhattan();
priority = distance + moves;
}
// 之后的结点,twin 状态跟从 parent
public GameTreeNode(Board board, GameTreeNode parent) {
this.board = board;
this.parent = parent;
twin = parent.twin;
moves = parent.moves + 1;
distance = board.manhattan();
priority = distance + moves;
}
public Board getBoard() {
return board;
}
public GameTreeNode getParent() {
return parent;
}
public boolean isTwin() {
return twin;
}
@Override
public int compareTo(GameTreeNode node) {
// Using Manhattan() as a tie-breaker helped a lot.
// Using Manhattan priority, then using Manhattan() to break the tie if two boards tie, and returning 0 if both measurements tie
if (priority == node.priority) {
return Integer.compare(distance, distance);
} else {
return Integer.compare(priority, node.priority);
}
}
@Override
public boolean equals(Object node) {
if (node == null) {
return false;
}
if (this == node) {
return true;
}
if (node.getClass() != this.getClass()) {
return false;
}
GameTreeNode that = (GameTreeNode) node;
return getBoard().equals(that.getBoard());
}
@Override
public int hashCode() {
return 1;
}
}
private int moves;
private boolean solvable;
private Iterable<Board> solution;
private final Board initial;
// find a solution to the initial board (using the A* algorithm)
public Solver(Board initial) {
if (initial == null) {
throw new IllegalArgumentException();
}
this.initial = initial;
cache();
}
// is the initial board solvable? (see below)
public boolean isSolvable() {
return solvable;
}
// min number of moves to solve initial board
public int moves() {
return moves;
}
// sequence of boards in a shortest solution
public Iterable<Board> solution() {
return this.solution;
}
// 构造的时候直接跑出结果,然后缓存,否则没有 solution 的话,moves 和 solvable 也拿不到
private void cache() {
// To implement the A* algorithm, you must use the MinPQ data type for the priority queue.
MinPQ<GameTreeNode> pq = new MinPQ<>();
// 把当前状态和双胞胎状态一起压入队列,做 A* 搜索
pq.insert(new GameTreeNode(initial, false));
pq.insert(new GameTreeNode(initial.twin(), true));
GameTreeNode node = pq.delMin();
Board b = node.getBoard();
// 要么是棋盘本身,要么是棋盘的双胞胎,总有一个会做到 isGoal()
while (!b.isGoal()) {
for (Board bb : b.neighbors()) {
// The critical optimization.
// A* search has one annoying feature: search nodes corresponding to the same board are enqueued on the priority queue many times.
// To reduce unnecessary exploration of useless search nodes, when considering the neighbors of a search node, don’t enqueue a neighbor if its board is the same as the board of the previous search node in the game tree.
if (node.getParent() == null || !bb.equals(node.getParent().getBoard())) {
pq.insert(new GameTreeNode(bb, node));
}
}
// 理论上这里 pq 永远不可能为空
node = pq.delMin();
b = node.getBoard();
}
// 如果是自己做出了结果,那么就是可解的,如果是双胞胎做出了结果,那么就是不可解的
solvable = !node.isTwin();
if (!solvable) {
// 注意不可解的地图,moves 是 -1,solution 是 null
moves = -1;
solution = null;
} else {
// 遍历,沿着 parent 走上去
ArrayList<Board> list = new ArrayList<>();
while (node != null) {
list.add(node.getBoard());
node = node.getParent();
}
// 有多少个状态,减 1 就是操作次数
moves = list.size() - 1;
// 做一次反转
Collections.reverse(list);
solution = list;
}
}
// test client (see below)
public static void main(String[] args) {
// create initial board from file
In in = new In(args[0]);
int n = in.readInt();
int[][] tiles = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tiles[i][j] = in.readInt();
}
}
Board initial = new Board(tiles);
// solve the puzzle
Solver solver = new Solver(initial);
// print solution to standard output
if (!solver.isSolvable()) {
StdOut.println("No solution possible");
} else {
StdOut.println("Minimum number of moves = " + solver.moves());
for (Board board : solver.solution()) {
StdOut.println(board);
}
}
}
}
欢迎关注我的个人博客以阅读更多优秀文章:凝神长老和他的朋友们(https://www.jxtxzzw.com)
也欢迎关注我的其他平台:知乎( https://s.zzw.ink/zhihu )、知乎专栏( https://s.zzw.ink/zhuanlan )、哔哩哔哩( https://s.zzw.ink/blbl )、微信公众号( 凝神长老和他的朋友们 )