参考资料:https://www.elastic.co/guide/cn/index.html
许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。 在寻找一个赚钱的工 作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。
直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。 他发布了他的第一个开源项目 Compass。
后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突 出, 他决定重写Compass,把它变为一个独立的服务并取名 Elasticsearch。
第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors(目前736名 contributors )。 一家公司已经开始围绕 Elasticsearch提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可用。
据说,Shay 的妻子还在等着她的食谱搜索引擎…
想用最简单的方式去理解 Elasticsearch 能为你做什么,那就是使用它了,让我们开始吧!
安装 Elasticsearch 之前,你需要先安装一个较新的版本的 Java,最好的选择是,你可以从 www.java.com 获得官方提供的最新版本的 Java。
之后,你可以从 elastic 的官网 elastic.co/downloads/elasticsearch 获取最新版本的 Elasticsearch。
要想安装 Elasticsearch,先下载并解压适合你操作系统的 Elasticsearch 版本。如果你想了解更多的信息, 可以查看 Elasticsearch 参考手册里边的安装部分,这边给出的链接指向安装说明 Installation。
提示
当你准备在生产环境安装 Elasticsearch 时,你可以在 官网下载地址 找 到 Debian 或者 RPM 包,除此之外,你也可以使用官方支持的 Puppet module 或者 Chef cookbook。
当你解压好了归档文件之后,Elasticsearch 已经准备好运行了。按照下面的操作,在前台(foregroud)启动 Elasticsearch:
cd elasticsearch-
./bin/elasticsearch [^1] [^2]
[^1] 如果你想把 Elasticsearch 作为一个守护进程在后台运行,那么可以在后面添加参数 -d 。
[^2] 如果你是在 Windows 上面运行 Elasticseach,你应该运行 bin\elasticsearch.bat 而不是 bin\elasticsearch 。
测试 Elasticsearch 是否启动成功,可以打开另一个终端,执行以下操作:
curl 'http://localhost:9200/?pretty'
TIP:如果你是在 Windows 上面运行 Elasticsearch,你可以从 http://curl.haxx.se/download.html 中下载 cURL。 cURL 给你提供了一种将请求提交到 Elasticsearch 的便捷方式,并且安装 cURL 之后,你可以通过复制与粘贴去尝试书中的许多例子。
你应该得到和下面类似的响应(response):
这就意味着你现在已经启动并运行一个 Elasticsearch 节点了,你可以用它做实验了。 单个 节点 可以作为一个运行中的 Elasticsearch 的实例。 而一个 集群 是一组拥有相同 cluster.name 的节点, 他们能一起工作并共享数据,还提供容错与可伸缩性。(当然,一个单独的节点也可以组成一个集群) 你可以在 elasticsearch.yml 配置文件中 修改 cluster.name ,该文件会在节点启动时加载 (译者注:这个重启服务后才会生效)。 关于上面的 cluster.name 以及其它 Important Configuration Changes 信息, 你可以在这本书后面提供的生产部署章节找到更多。
TIP:看到下方的 View in Sense 的例子了么?Install the Sense console 使用你自己的 Elasticsearch 集群去运行这本书中的例子, 查看会有怎样的结果。
当 Elastcisearch 在前台运行时,你可以通过按 Ctrl+C 去停止。
Sense 是一个 Kibana 应用 它提供交互式的控制台,通过你的浏览器直接向 Elasticsearch 提交请求。 这本书的在线版本包含有一个 View in Sense 的链接,里面有许多代码示例。当点击的时候,它会打开一个代码示例的Sense控制台。 你不必安装 Sense,但是它允许你在本地的 Elasticsearch 集群上测试示例代码,从而使本书更具有交互性。
Kibana 下载地址:https://www.elastic.co/downloads/kibana
安装与运行 Sense:
./bin/kibana plugin --install elastic/sense
[1][2]./bin/kibana
[^1]第一个业务需求就是存储雇员数据。 这将会以 雇员文档 的形式存储:一个文档代表一个雇员。存储数据到 Elasticsearch 的行为叫做 索引 ,但在索引一个文档之前,需要确定将文档存储在哪里。
一个 Elasticsearch 集群可以 包含多个 索引 ,相应的每个索引可以包含多个 类型 。 这些不同的类型存储着多个 文档 ,每个文档又有 多个 属性 。
Index Versus Index Versus Index
你也许已经注意到 索引 这个词在 Elasticsearch 语境中包含多重意思, 所以有必要做一点儿说明:
索引(名词):
如前所述,一个 索引 类似于传统关系数据库中的一个 数据库 ,是一个存储关系型文档的地方。 索引 (index) 的复数词为 indices
或 indexes 。索引(动词):
索引一个文档 就是存储一个文档到一个 索引 (名词)中以便它可以被检索和查询到。这非常类似于 SQL 语句中的 INSERT
关键词,除了文档已存在时新文档会替换旧文档情况之外。倒排索引:
关系型数据库通过增加一个 索引 比如一个 B树(B-tree)索引 到指定的列上,以便提升数据检索速度。Elasticsearch 和
Lucene 使用了一个叫做 倒排索引 的结构来达到相同的目的。
- 默认的,一个文档中的每一个属性都是 被索引 的(有一个倒排索引)和可搜索的。一个没有倒排索引的属性是不能被搜索到的。我们将在 倒排索引 讨论倒排索引的更多细节。
对于雇员目录,我们将做如下操作:
每个雇员索引一个文档,包含该雇员的所有信息。
每个文档都将是 employee 类型 。
该类型位于 索引 megacorp 内。
该索引保存在我们的 Elasticsearch 集群中。
实践中这非常简单(尽管看起来有很多步骤),我们可以通过一条命令完成所有这些动作:
PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
注意,路径 /megacorp/employee/1 包含了三部分的信息:
megacorp
索引名称
employee
类型名称
1
特定雇员的ID
请求体 —— JSON 文档 —— 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。
很简单!无需进行执行管理任务,如创建一个索引或指定每个属性的数据类型之类的,可以直接只索引一个文档。Elasticsearch 默认地完成其他一切,因此所有必需的管理任务都在后台使用默认设置完成。
进行下一步前,让我们增加更多的员工信息到目录中:
PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}
PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
目前我们已经在 Elasticsearch 中存储了一些数据, 接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。
这在 Elasticsearch 中很简单。简单地执行 一个 HTTP GET 请求并指定文档的地址——索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:
GET /megacorp/employee/1
返回结果包含了文档的一些元数据,以及 _source 属性,内容是 John Smith 雇员的原始 JSON 文档:
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
提示
将 HTTP 命令由 PUT 改为 GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT 。
一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!
第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:
GET /megacorp/employee/_search
可以看到,我们仍然使用索引库 megacorp 以及类型 employee,但与指定一个文档 ID 不同,这次使用
_search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果。
{
"took": 6,
"timed_out": false,
"_shards": { ... },
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
注意:返回结果不仅告知匹配了哪些文档,还包含了整个文档本身:显示搜索结果给最终用户所需的全部信息。
接下来,尝试下搜索姓氏为 Smith
的雇员。为此,我们将使用一个 高亮 搜索,很容易通过命令行完成。这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们通过一个URL参数来传递查询信息给搜索接口:
GET /megacorp/employee/_search?q=last_name:Smith
我们仍然在请求路径中使用 _search 端点,并将查询本身赋值给参数 q= 。返回结果给出了所有的 Smith:
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : 2,
"max_score" : 0.2876821,
"hits" : [
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "2",
"_score" : 0.2876821,
"_source" : {
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests" : [
"music"
]
}
},
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_score" : 0.2876821,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 16,
"about" : "I love to go rock climbing",
"interests" : [
"sports",
"music"
]
}
}
]
}
}
Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。
领域特定语言 (DSL), 指定了使用一个 JSON 请求。我们可以像这样重写之前的查询所有 Smith 的搜索 :
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
返回结果与之前的查询一样,但还是可以看到有一些变化。其中之一是,不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一,后续将会了解)。
现在尝试下更复杂的搜索。 同样搜索姓氏为 Smith 的雇员,但这次我们只需要年龄大于 30 的。查询需要稍作调整,使用过滤器 filter ,它支持高效地执行一个结构化查询。
GET /megacorp/employee/_search
{
"query" : {
"bool": {
"must": {
"match" : {
"last_name" : "smith" [^1]
}
},
"filter": {
"range" : {
"age" : { "gt" : 30 } [^2]
}
}
}
}
}
[^1]这部分与我们之前使用的 match 查询 一样。
[^2]这部分是一个 range 过滤器 , 它能找到年龄大于 30 的文档,其中 gt 表示_大于(_great than)。
目前无需太多担心语法问题,后续会更详细地介绍。只需明确我们添加了一个 过滤器 用于执行一个范围查询,并复用之前的 match 查询。现在结果只返回了一个雇员,叫 Jane Smith,32 岁。
{
...
"hits": {
"total": 1,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
截止目前的搜索相对都很简单:单个姓名,通过年龄过滤。现在尝试下稍微高级点儿的全文搜索——一项 传统数据库确实很难搞定的任务。
搜索下所有喜欢攀岩(rock climbing)的雇员:
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
显然我们依旧使用之前的 match 查询在about 属性上搜索 “rock climbing” 。得到两个匹配的文档:
{
...
"hits": {
"total": 2,
"max_score": 0.16273327,
"hits": [
{
...
"_score": 0.16273327, [^1]
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_score": 0.016878016, [^2]
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
相关性得分
[^1] [^2]Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。第一个最高得分的结果很明显:John Smith 的 about 属性清楚地写着 “rock climbing” 。
但为什么 Jane Smith 也作为结果返回了呢?原因是她的 about 属性里提到了 “rock” 。因为只有 “rock” 而没有 “climbing” ,所以她的相关性得分低于 John 的。
这是一个很好的案例,阐明了 Elasticsearch 如何 在 全文属性上搜索并返回相关性最强的结果。Elasticsearch中的 相关性 概念非常重要,也是完全区别于传统关系型数据库的一个概念,数据库中的一条记录要么匹配要么不匹配。
找出一个属性中的独立单词是没有问题的,但有时候想要精确匹配一系列单词或者短语 。 比如, 我们想执行这样一个查询,仅匹配同时包含 “rock” 和 “climbing” ,并且 二者以短语 “rock climbing” 的形式紧挨着的雇员记录。
为此对 match 查询稍作调整,使用一个叫做 match_phrase 的查询:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
毫无悬念,返回结果仅有 John Smith 的文档。
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
许多应用都倾向于在每个搜索结果中 高亮 部分文本片段,以便让用户知道为何该文档符合查询条件。在 Elasticsearch 中检索出高亮片段也很容易。
再次执行前面的查询,并增加一个新的 highlight 参数:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
当执行该查询时,返回结果与之前一样,与此同时结果中还多了一个叫做 highlight 的部分。这个部分包含了 about 属性匹配的文本片段,并以 HTML 标签 封装:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go rock climbing" [^1]
]
}
}
]
}
}
[^1]原始文本中的高亮片段
终于到了最后一个业务需求:支持管理者对雇员目录做分析。 Elasticsearch 有一个功能叫聚合(aggregations),允许我们基于数据生成一些精细的分析结果。聚合与 SQL 中的 GROUP BY 类似但更强大。
举个例子,挖掘出雇员中最受欢迎的兴趣爱好:
GET /megacorp/employee/_search
{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}
}
暂时忽略掉语法,直接看看结果:
{
...
"hits": { ... },
"aggregations": {
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "forestry",
"doc_count": 1
},
{
"key": "sports",
"doc_count": 1
}
]
}
}
}
可以看到,两位员工对音乐感兴趣,一位对林地感兴趣,一位对运动感兴趣。这些聚合并非预先统计,而是从匹配当前查询的文档中即时生成。如果想知道叫 Smith 的雇员中最受欢迎的兴趣爱好,可以直接添加适当的查询来组合查询:
GET /megacorp/employee/_search
{
"query": {
"match": {
"last_name": "smith"
}
},
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}
all_interests 聚合已经变为只包含匹配查询的文档:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "sports",
"doc_count": 1
}
]
}
聚合还支持分级汇总 。比如,查询特定兴趣爱好员工的平均年龄:
GET /megacorp/employee/_search
{
"aggs" : {
"all_interests" : {
"terms" : { "field" : "interests" },
"aggs" : {
"avg_age" : {
"avg" : { "field" : "age" }
}
}
}
}
}
得到的聚合结果有点儿复杂,但理解起来还是很简单的:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2,
"avg_age": {
"value": 28.5
}
},
{
"key": "forestry",
"doc_count": 1,
"avg_age": {
"value": 35
}
},
{
"key": "sports",
"doc_count": 1,
"avg_age": {
"value": 25
}
}
]
}
输出基本是第一次聚合的加强版。依然有一个兴趣及数量的列表,只不过每个兴趣都有了一个附加的 avg_age 属性,代表有这个兴趣爱好的所有员工的平均年龄。
即使现在不太理解这些语法也没有关系,依然很容易了解到复杂聚合及分组通过 Elasticsearch 特性实现得很完美。可提取的数据类型毫无限制。