新建一个脚本命名为:drawCuboid.m
function [CuboidHandle, verts, facs] = drawCuboid(varargin)
% Draw Cuboid
% Draw a Cuboid using 8 rectangular faces. Places Cuboid Into Current Figure
%
% Inputs (SL, CV, EA, colr, alph)
% ----------------
% SL - [X;Y;Z] Length of Cuboid Side (SL - SideLength)
% CV - [X;Y;Z] Center of volume
% EA - [Yaw(Z-axis);Pitch(y-axis);Roll(x-axis)] Euler/Rotation angles [radians]
% colr - Color of cuboid; string (ex. 'r','b','g') or vector [R G B]
% alph - Alpha transparency value of cuboid
%
% Outputs (CuboidHandle, verts, facs)
% ----------------
% CuboidHandle = Handle for Patch Object
% verts = 3x8 XYZ Vertices
% facs = 6x4 Order of faces
%
%% Number of inputs and assign defaults if not specified
% Define Default Values
SL = [1;1;1]; CV = [0;0;0]; EA = [0;0;0]; colr = [0.5 0.5 0.5]; alph = 0.5;
switch nargin
case 0
% All Inputs Empty Using Default Values
case 1
SL = varargin{
1};
case 2
SL = varargin{
1}; CV = varargin{
2};
case 3
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3};
case 4
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3}; colr = varargin{
4};
case 5
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3}; colr = varargin{
4}; alph = varargin{
5};
otherwise
error('Invalid number of inputs')
end
%% Form ZYX Rotation Matrix
% Calculate Sines and Cosines
c1 = cos(EA(1)); s1 = sin(EA(1));
c2 = cos(EA(2)); s2 = sin(EA(2));
c3 = cos(EA(3)); s3 = sin(EA(3));
% Calculate Matrix
R = [c1*c2 -c2*s1 s2
c3*s1+c1*s2*s3 c1*c3-s1*s2*s3 -c2*s3
s1*s3-c1*c3*s2 c3*s1*s2+c1*s3 c2*c3]';
%% Create Vertices
x = 0.5*SL(1)*[-1 1 1 -1 -1 1 1 -1]';
y = 0.5*SL(2)*[1 1 1 1 -1 -1 -1 -1]';
z = 0.5*SL(3)*[-1 -1 1 1 1 1 -1 -1]';
%% Create Faces
facs = [1 2 3 4
5 6 7 8
4 3 6 5
3 2 7 6
2 1 8 7
1 4 5 8];
%% Rotate and Translate Vertices
verts = zeros(3,8);
for i = 1:8
verts(1:3,i) = R*[x(i);y(i);z(i)]+CV;
end
%% Draw Patch Object
CuboidHandle = patch('Faces',facs,'Vertices',verts','FaceColor',colr,'FaceAlpha',alph);
end
新建另外一个脚本,输入:
drawCuboid([2;2;2],[2;2;2],[30/180*pi;0;0],'g',0.1)
drawCuboid([2;2;2],[2;2;2],[0;0;0],'b',0.1)
下面两幅图中绿色立方体为原始立方体,紫色立方体为绕立方体中心顺时针旋转30°后的立方体。
function [CuboidHandle, verts, facs] = drawCuboid(varargin)
% Draw Cuboid
% Draw a Cuboid using 8 rectangular faces. Places Cuboid Into Current Figure
%
% Inputs (SL, CV, EA, colr, alph)
% ----------------
% SL - [X;Y;Z] Length of Cuboid Side (SL - SideLength)
% CV - [X;Y;Z] Center of volume
% EA - [Yaw(Z-axis);Pitch(y-axis);Roll(x-axis)] Euler/Rotation angles [radians]
% colr - Color of cuboid; string (ex. 'r','b','g') or vector [R G B]
% alph - Alpha transparency value of cuboid
%
% Outputs (CuboidHandle, verts, facs)
% ----------------
% CuboidHandle = Handle for Patch Object
% verts = 3x8 XYZ Vertices
% facs = 6x4 Order of faces
%
%% Number of inputs and assign defaults if not specified
% Define Default Values
SL = [1;1;1]; CV = [0;0;0]; EA = [0;0;0]; colr = [0.5 0.5 0.5]; alph = 0.5;
switch nargin
case 0
% All Inputs Empty Using Default Values
case 1
SL = varargin{
1};
case 2
SL = varargin{
1}; CV = varargin{
2};
case 3
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3};
case 4
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3}; colr = varargin{
4};
case 5
SL = varargin{
1}; CV = varargin{
2}; EA = varargin{
3}; colr = varargin{
4}; alph = varargin{
5};
otherwise
error('Invalid number of inputs')
end
%% Form ZYX Rotation Matrix
% Calculate Sines and Cosines
c1 = cos(EA(1)); s1 = sin(EA(1));
c2 = cos(EA(2)); s2 = sin(EA(2));
c3 = cos(EA(3)); s3 = sin(EA(3));
% Calculate Matrix
R = [c1*c2 -c2*s1 s2
c3*s1+c1*s2*s3 c1*c3-s1*s2*s3 -c2*s3
s1*s3-c1*c3*s2 c3*s1*s2+c1*s3 c2*c3]';
%% Create Vertices
x = 0.5*SL(1)*[-1 1 1 -1 -1 1 1 -1]';
y = 0.5*SL(2)*[1 1 1 1 -1 -1 -1 -1]';
z = 0.5*SL(3)*[-1 -1 1 1 1 1 -1 -1]';
%% Create Faces
facs = [1 2 3 4
5 6 7 8
4 3 6 5
3 2 7 6
2 1 8 7
1 4 5 8];
%% Rotate and Translate Vertices
verts = zeros(3,8);
for i = 1:8
verts(1:3,i) = R*[x(i);y(i);z(i)]+R*CV;
end
%% Draw Patch Object
CuboidHandle = patch('Faces',facs,'Vertices',verts','FaceColor',colr,'FaceAlpha',alph);
end
drawCuboid([2;2;2],[2;2;2],[30/180*pi;0;0],'g',0.1)
drawCuboid([2;2;2],[2;2;2],[0;0;0],'b',0.1)
下面两幅图中绿色立方体为原始立方体,紫色立方体为原点(0,0,0),顺时针旋转30°后的立方体。
图1 俯视图
绕立方体中心旋转时计算公式如下,其中R是旋转矩阵
for i = 1:8
verts(1:3,i) = R*[x(i);y(i);z(i)]+CV;
end
绕原点旋转时计算公式如下,其中R是旋转矩阵
for i = 1:8
verts(1:3,i) = R*[x(i);y(i);z(i)]+R*CV;
end
还可以使用MATLAB提供的multicuboid函数画立方体,但是不太清楚如何实现平移、旋转等变换。详情请看资料multicuboid函数。