「Leetcode」142.环形链表II:环找到了,那入口呢?

第142题.环形链表II

题意:给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。

如果 pos 是 -1,则在该链表中没有环。

「说明」:不允许修改给定的链表。

 

「Leetcode」142.环形链表II:环找到了,那入口呢?_第1张图片

思路

这道题目,不仅考察对链表的操作,而且还需要一些数学运算。

主要考察两知识点:

  • 判断链表是否环
  • 如果有环,如何找到这个环的入口

判断链表是否有环

可以使用快慢指针法, 分别定义 fast 和 slow指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。

为什么fast 走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢

首先第一点:「fast指针一定先进入环中,如果fast 指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。」

那么来看一下,「为什么fast指针和slow指针一定会相遇呢?」

可以画一个环,然后让 fast指针在任意一个节点开始追赶slow指针。

会发现最终都是这种情况, 如下图:

「Leetcode」142.环形链表II:环找到了,那入口呢?_第2张图片

fast和slow各自再走一步, fast和slow就相遇了

这是因为fast是走两步,slow是走一步,「其实相对于slow来说,fast是一个节点一个节点的靠近slow的」,所以fast一定可以和slow重合。

如果有环,如何找到这个环的入口

「此时已经可以判断链表是否有环了,那么接下来要找这个环的入口了。」

假设从头结点到环形入口节点 的节点数为x。环形入口节点到 fast指针与slow指针相遇节点 节点数为y。从相遇节点 再到环形入口节点节点数为 z。如图所示:

 

「Leetcode」142.环形链表II:环找到了,那入口呢?_第3张图片

 

那么相遇时:slow指针走过的节点数为: x + y, fast指针走过的节点数:x + y + n (y + z),n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。

因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:

(x + y) * 2 = x + y + n (y + z)

两边消掉一个(x+y): x + y = n (y + z)

因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。

所以要求x ,将x单独放在左面:x = n (y + z) - y ,

再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z 注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。

这个公式说明什么呢?

先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。

当 n为1的时候,公式就化解为 x = z

这就意味着,「从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点」

也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。

让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。

那么 n如果大于1是什么情况呢,就是fast指针在环形转n圈之后才遇到 slow指针。

其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。

C++代码

 

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode* fast = head;
        ListNode* slow = head;
        while(fast != NULL && fast->next != NULL) {
            slow = slow->next;
            fast = fast->next->next;
            // 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇
            if (slow == fast) {
                ListNode* index1 = fast;
                ListNode* index2 = head;
                while (index1 != index2) {
                    index1 = index1->next;
                    index2 = index2->next;
                }
                return index2; // 返回环的入口
            }
        }
        return NULL;
    }
};

本文:https://github.com/youngyangyang04/leetcode-master​已经收录,里面还有leetcode刷题攻略、各个类型经典题目刷题顺序、思维导图看一看一定会有所收获,如果对你有帮助也给一个star支持一下吧!

 

我是程序员Carl,哈工大师兄,先后在腾讯和百度从事技术研发多年,利用工作之余重刷leetcode,更多  精彩算法文章尽在:  代码随想录,关注后,回复「Java」「C++」「python」「简历模板」等等,有我整理多年的学习资料,可以加我  微信,备注「个人简介」+「组队刷题」,拉你进入刷题群(无任何广告,纯个人分享),每天一道经典题目分析,我选的每一道题目都不是孤立的,而是由浅入深一脉相承的,如果跟住节奏每篇连续着看,定会融会贯通。

 

你可能感兴趣的:(leecode题解,指针,算法,leetcode,链表)