很显然的后缀平衡树
一开始以为要可持久化 发现根本不用。。
treap的常数要死人啊?
我好像T光光了?
寄刀片寄刀片
#include
#include
#include
#include
#include
#include
using namespace std;
#define ld long long
char Query[999101];
namespace Tree
{
struct Node
{
int no,rank,size,Rand;
long long l,r;
bool cs;
long long val(){return l+r;}
Node *lc,*rc;
}*T[700000];
const
int Max=300000;
Node *Cache;
int Cachetot;
inline Node *New(){if(!Cachetot)Cache=new Node[Cachetot=Max];return Cache+(--Cachetot);}
inline Node *New(int rand,int no,long long l,long long r){Node *K=New();K->cs=false;K->no=no;K->size=K->rank=1;K->Rand=rand;K->lc=K->rc=NULL;K->l=l,K->r=r;return K;}
inline Node *New(Node *Old){Node *K=New();*K=*Old;return K;}
char Con[700001];
int Cnt;
Node *Cur;
void Up(Node *a){a->size=(a->rank=(a->lc?a->lc->size:0)+1)+(a->rc?a->rc->size:0);}
void Bg()
{
Con[0]='A'-1;
Cur=T[0]=New(rand(),0,-1e15,1e15);
}
bool cmp(Node *a,Node *b)
{
return Con[a->no]^Con[b->no]?Con[a->no]no]:(T[a->no-1]->val())<(T[b->no-1]->val());
}
void Modify(Node *N,long long l,long long r)
{
if(!N)return ;
if((!N->cs)&&N->l==l&&N->r==r)
return ;
N->cs=false;
N->l=l,N->r=r;
Modify(N->lc,l,(l+r)/2);
Modify(N->rc,(l+r)/2,r);
}
Node *Merge(Node *a,Node *b)
{
if(!a)return b;
if(!b)return a;
Node *R;
if(a->Rand>b->Rand)
R=a,R->rc=Merge(R->rc,b);
else R=b,R->lc=Merge(a,R->lc);
R->cs=true;
Up(R);
return R;
}
void Split(Node *Cur,Node *Op,Node *&Lc,Node *&Rc)
{
if(!Cur){Lc=Rc=NULL;return;}
Cur->cs=true;
if(cmp(Cur,Op))
{
Lc=Cur;
Split(Cur->rc,Op,Lc->rc,Rc);
Up(Lc);
return;
}
Rc=Cur;
Split(Cur->lc,Op,Lc,Rc->lc);
Up(Rc);
}
void insert(char k)
{
Con[++Cnt]=k;
T[Cnt]=New(rand(),Cnt,-1,-1);
Node *Lc,*Rc;
Split(Cur,T[Cnt],Lc,Rc);
Cur=Merge(Lc,T[Cnt]);
Cur=Merge(Cur,Rc);
Modify(Cur,-1e15,1e15);
}
Node *Del(Node *a)
{
if(!a)return NULL;
a->cs=true;
if(a->lc)return a->lc=Del(a->lc),Up(a),a;
return a->rc;
}
void pop()
{
Node *Lc,*Rc;
Split(Cur,T[Cnt],Lc,Rc);
if(Rc==NULL)
Cnt++,Cnt--;
Rc=Del(Rc);
Cur=Merge(Lc,Rc);
Modify(Cur,-1e15,1e15);
Cnt--;
}
int rank(Node *a,int Len)
{
if(!a)return 0;
bool cp;
for(int i=1;i<=Len;i++)
if(Con[a->no-i+1]^Query[i])
{
cp=Con[a->no-i+1]break;
}
return (cp?a->rank+rank(a->rc,Len):(rank(a->lc,Len)));
}
int Qr(int Len)
{
Query[++Len]='A'-2;
int p=rank(Cur,Len);
Query[Len]='Z'+1;
p=rank(Cur,Len)-p;
return p;
}
}
int L,mask;
inline void Decode(int l)
{
int t=mask;
for(int i=1;i<=l;i++){
t=(t*131+i-1)%l;
swap(Query[i],Query[t+1]);
}
for(int i=1,j=l;iint main()
{
Tree::Bg();
freopen("self.in","r",stdin);
freopen("self.out","w",stdout);
int Q;
scanf("%d",&Q);
scanf("%s",Query);
int Len=strlen(Query);
for(int i=0;iwhile(Q--)
{
char c;
do c=getchar();while(c!='A'&&c!='D'&&c!='Q');
if(c=='Q')
{
do c=getchar();while(c!=' ');
int n;
n=0;
do c=getchar();while(c<'A'||c>'Z');
while(c<='Z'&&c>='A')Query[++n]=c,c=getchar();
Decode(n);
L=Tree::Qr(n);
mask^=L;
printf("%d\n",L);
}
else if(c=='A')
{
do c=getchar();while(c!=' ');
int n;
n=0;
do c=getchar();while(c<'A'||c>'Z');
while(c<='Z'&&c>='A')Query[++n]=c,c=getchar();
Decode(n);
for(int i=n;i>=1;i--)
Tree::insert(Query[i]);
}
else
{
do c=getchar();while(c!=' ');
int n;
scanf("%d",&n);
while(n--)
Tree::pop();
}
}
return 0;
}