错误: 没有"forecast.Arima"这个函数

环境:ubuntu16.04

R语言版本:R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"

出处:第112页


需要的依赖:

进入R语言交互模式以后,如下:
>install.packages("forecast")
可以下载到各种tar.gz包

package.tar.gz

用q()可以退出交互模式


从下载点把包拷贝到自己的文件夹中进行安装,安装顺序如下
apt-get install libcurl4-openssl-dev
R CMD INSTALL curl_3.2.tar.gz
R CMD INSTALL TTR_0.23-3.tar.gz
R CMD INSTALL quantmod_0.4-12.tar.gz
R CMD INSTALL tseries_0.10-43.tar.gz
R CMD INSTALL forecast_8.3.tar.gz
R CMD INSTALL fUnitRoots_3042.79.tar.gz

运行方式Rscript test.r



先上数据:

catering_sale.csv
日期	数据
2015/3/1	51
2015/2/28	2618.2
2015/2/27	2608.4
2015/2/26	2651.9
2015/2/25	3442.1
2015/2/24	3393.1
2015/2/23	3136.6
2015/2/22	3744.1
2015/2/21	6607.4
2015/2/20	4060.3
2015/2/19	3614.7
2015/2/18	3295.5
2015/2/16	2332.1
2015/2/15	2699.3
2015/2/14	
2015/2/13	3036.8
2015/2/12	865
2015/2/11	3014.3
2015/2/10	2742.8
2015/2/9	2173.5
2015/2/8	3161.8
2015/2/7	3023.8
2015/2/6	2998.1
2015/2/5	2805.9
2015/2/4	2383.4
2015/2/3	2620.2
2015/2/2	2600
2015/2/1	2358.6
2015/1/31	2682.2
2015/1/30	2766.8
2015/1/29	2618.8
2015/1/28	2714.3
2015/1/27	2280.8
2015/1/26	2414
2015/1/25	3130.6
2015/1/24	2716.9
2015/1/23	2930.8
2015/1/22	2504.9
2015/1/21	2559.5
2015/1/20	2168.6
2015/1/19	2436.4
2015/1/18	3234.3
2015/1/17	3061
2015/1/16	2900.1
2015/1/15	2646.8
2015/1/14	2615.2
2015/1/13	2124.4
2015/1/12	1958
2015/1/8	2259.1
2015/1/7	2419.8
2015/1/6	2775
2015/1/5	2594.9
2015/1/4	2468.3
2015/1/3	3004.3
2015/1/2	3313.3
2015/1/1	3613.6
2014/12/31	2655.9
2014/12/30	2644.3
2014/12/29	2565.3
2014/12/27	2525.9
2014/12/26	2778
2014/12/25	2542.1
2014/12/24	2473.3
2014/12/23	2240.1
2014/12/22	2575
2014/12/21	3802.8
2014/12/18	2274.7
2014/12/17	2687.2
2014/12/16	2577.8
2014/12/15	2583
2014/12/14	3282.6
2014/12/13	3113.7
2014/12/12	2661.4
2014/12/11	2553.2
2014/12/10	2511.3
2014/12/9	2710.3
2014/12/8	2468.1
2014/12/7	3041.5
2014/12/6	3178.9
2014/12/5	2594.4
2014/12/4	2381.1
2014/12/3	2415
2014/12/2	2236.4
2014/11/30	3207.2
2014/11/29	3059.5
2014/11/28	3039.1
2014/11/26	2817.5
2014/11/25	2891.8
2014/11/24	2470.1
2014/11/23	3556.6
2014/11/22	3397.7
2014/11/20	2761.6
2014/11/19	2618.2
2014/11/18	2758.3
2014/11/17	2614.3
2014/11/16	3437.1
2014/11/15	3250
2014/11/14	3063.7
2014/11/13	2839.2
2014/11/12	2360.9
2014/11/11	2158.5
2014/11/10	2005.5
2014/11/9	3236.4
2014/11/8	22
2014/11/7	2452.6
2014/11/6	2265
2014/11/5	2566.1
2014/11/4	2527.2
2014/11/3	2326.5
2014/11/2	2941.9
2014/11/1	60
2014/10/31	2520.9
2014/10/30	2446.2
2014/10/29	2549.4
2014/10/28	2449.3
2014/10/27	2162.5
2014/10/26	2781.3
2014/10/25	3060.6
2014/10/24	2064
2014/10/22	2439.7
2014/10/21	2476.2
2014/10/20	2478.3
2014/10/19	2826.2
2014/10/18	2924.8
2014/10/17	2417.5
2014/10/16	2450.1
2014/10/15	2533
2014/10/14	2238.7
2014/10/13	2388.8
2014/10/12	3291.3
2014/10/11	2738.8
2014/10/10	2344.1
2014/10/9	2068.8
2014/10/8	3185.3
2014/10/7	2778.6
2014/10/6	2921.1
2014/10/5	2524.3
2014/10/4	3057.1
2014/10/3	3039.6
2014/10/2	3193.4
2014/10/1	3075.4
2014/9/30	2847.6
2014/9/29	2311.4
2014/9/28	2327.3
2014/9/27	9106.44
2014/9/26	2616.6
2014/9/25	2620.2
2014/9/24	2616.4
2014/9/23	2655.8
2014/9/22	2310.7
2014/9/21	2935.8
2014/9/20	3017.9
2014/9/19	2625.5
2014/9/18	2752.7
2014/9/17	2181.5
2014/9/16	2440.5
2014/9/15	2422.8
2014/9/14	2583.6
2014/9/13	2728.9
2014/9/12	2525.3
2014/9/11	2531.7
2014/9/10	2300.5
2014/9/9	2097.5
2014/9/8	4065.2
2014/9/7	3555.2
2014/9/6	3462.5
2014/9/5	3033.1
2014/9/4	2926.1
2014/9/3	2431.4
2014/9/2	2706
2014/9/1	3049.9
2014/8/31	3494.7
2014/8/30	3691.9
2014/8/29	2929.5
2014/8/28	2760.6
2014/8/27	2593.7
2014/8/26	2884.4
2014/8/25	2591.3
2014/8/24	3022.6
2014/8/23	3052.1
2014/8/22	2789.2
2014/8/21	2909.8
2014/8/20	2326.8
2014/8/19	2453.1
2014/8/18	2351.2
2014/8/17	3279.1
2014/8/16	3381.9
2014/8/15	2988.1
2014/8/14	2577.7
2014/8/13	2332.3
2014/8/12	2518.6
2014/8/11	2697.5
2014/8/10	3244.7
2014/8/9	3346.7
2014/8/8	2900.6
2014/8/7	2759.1
2014/8/6	2915.8
2014/8/5	2618.1
2014/8/4	2993
2014/8/3	3436.4
2014/8/2	2261.7

原书代码修改后,test.r如下:

paste("------------------2--------------------------------")
#####对缺失值用多重插补值得到的结果为2699.3
	
data<-read.csv("./catering_sale.csv",header=T)[,2]
data
#install.packages("forecast")
#install.packages("fUnitRoots")
library(forecast)
library(fUnitRoots)
sales=ts(data)
plot.ts(sales,xlab="时间",ylab="销量/元")
###单位根检验
unitrootTest(sales)
####自相关图
acf(sales,na.action = na.pass)



###一阶差分
difsales=diff(sales)
plot.ts(difsales,xlab="时间",ylab="销量残差/元")
###自相关图
acf(difsales,na.action = na.pass)
###单位根检验
unitrootTest(difsales)
###白噪声检验
Box.test(difsales,type="Ljung-Box")
####偏自相关图
pacf(difsales,na.action = na.pass)
###ARIMA(1,1,0)模型
arima=arima(sales,order=c(1,1,0))
arima
forecast=forecast(arima,h=5,level=c(99.5))
forecast

运行方式:

Rscript test.r

运行结果如下:

-------------------------------------------------------------------------------------------------------------------------------------------------

root@Ubuntu16:/home/appleyuchi/桌面/R语言# Rscript test.r 
[1] "------------------2--------------------------------"
  [1]   51.00 2618.20 2608.40 2651.90 3442.10 3393.10 3136.60 3744.10 6607.40
 [10] 4060.30 3614.70 3295.50 2332.10 2699.30      NA 3036.80  865.00 3014.30
 [19] 2742.80 2173.50 3161.80 3023.80 2998.10 2805.90 2383.40 2620.20 2600.00
 [28] 2358.60 2682.20 2766.80 2618.80 2714.30 2280.80 2414.00 3130.60 2716.90
 [37] 2930.80 2504.90 2559.50 2168.60 2436.40 3234.30 3061.00 2900.10 2646.80
 [46] 2615.20 2124.40 1958.00 2259.10 2419.80 2775.00 2594.90 2468.30 3004.30
 [55] 3313.30 3613.60 2655.90 2644.30 2565.30 2525.90 2778.00 2542.10 2473.30
 [64] 2240.10 2575.00 3802.80 2274.70 2687.20 2577.80 2583.00 3282.60 3113.70
 [73] 2661.40 2553.20 2511.30 2710.30 2468.10 3041.50 3178.90 2594.40 2381.10
 [82] 2415.00 2236.40 3207.20 3059.50 3039.10 2817.50 2891.80 2470.10 3556.60
 [91] 3397.70 2761.60 2618.20 2758.30 2614.30 3437.10 3250.00 3063.70 2839.20
[100] 2360.90 2158.50 2005.50 3236.40   22.00 2452.60 2265.00 2566.10 2527.20
[109] 2326.50 2941.90   60.00 2520.90 2446.20 2549.40 2449.30 2162.50 2781.30
[118] 3060.60 2064.00 2439.70 2476.20 2478.30 2826.20 2924.80 2417.50 2450.10
[127] 2533.00 2238.70 2388.80 3291.30 2738.80 2344.10 2068.80 3185.30 2778.60
[136] 2921.10 2524.30 3057.10 3039.60 3193.40 3075.40 2847.60 2311.40 2327.30
[145] 9106.44 2616.60 2620.20 2616.40 2655.80 2310.70 2935.80 3017.90 2625.50
[154] 2752.70 2181.50 2440.50 2422.80 2583.60 2728.90 2525.30 2531.70 2300.50
[163] 2097.50 4065.20 3555.20 3462.50 3033.10 2926.10 2431.40 2706.00 3049.90
[172] 3494.70 3691.90 2929.50 2760.60 2593.70 2884.40 2591.30 3022.60 3052.10
[181] 2789.20 2909.80 2326.80 2453.10 2351.20 3279.10 3381.90 2988.10 2577.70
[190] 2332.30 2518.60 2697.50 3244.70 3346.70 2900.60 2759.10 2915.80 2618.10
[199] 2993.00 3436.40 2261.70
载入需要的程辑包:timeDate
载入需要的程辑包:methods
载入需要的程辑包:timeSeries
载入需要的程辑包:fBasics
There were 30 warnings (use warnings() to see them)


Title:
 Augmented Dickey-Fuller Test


Test Results:
  PARAMETER:
    Lag Order: 1
  STATISTIC:
    DF: -1.2631
  P VALUE:
    t: 0.1898 
    n: 0.4279 


Description:
 Fri Apr 13 22:51:30 2018 by user: 


There were 42 warnings (use warnings() to see them)


Title:
 Augmented Dickey-Fuller Test


Test Results:
  PARAMETER:
    Lag Order: 1
  STATISTIC:
    DF: -16.1785
  P VALUE:
    t: < 2.2e-16 
    n: 0.004452 


Description:
 Fri Apr 13 22:51:30 2018 by user: 




Box-Ljung test


data:  difsales
X-squared = 40.42, df = 1, p-value = 2.048e-10




Call:
arima(x = sales, order = c(1, 1, 0))


Coefficients:
          ar1
      -0.4765
s.e.   0.0644


sigma^2 estimated as 737874:  log likelihood = -1627.1,  aic = 3258.2
    Point Forecast    Lo 99.5  Hi 99.5
202       2821.403   410.1730 5232.633
203       2554.724  -166.9652 5276.414
204       2681.787  -586.6708 5950.245
205       2621.246  -995.6650 6238.157
206       2650.092 -1335.0917 6635.275

-------------------------------------------------------------------------------------------------------------------------------------------------

另外还会生成一个Rplots.pdf的文件,里面都是图形.

参考来自:

https://stackoverflow.com/questions/45193907/forecast-arima-function-missing-fromforecast-package


你可能感兴趣的:(R语言)