蒙特卡洛理解

蒙特卡罗算法并不是一种算法的名称,而是是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大,但在(放弃随机采样,而采用类似全采样这样的确定性方法)获得真正的结果之前,无法知道目前得到的结果是不是真正的结果。
从特性特性来说,我们知道,既然是随机算法,在采样不全时,通常不能保证找到最优解,只能说是尽量找。那么根据怎么个“尽量”法呢,我们我们把随机算法分成两类:

(1)蒙特卡罗算法:采样越多,越近似最优解;
(2)拉斯维加斯算法:采样越多,越有机会找到最优解;

举个例子,假如筐里有100个苹果,让我每次闭眼拿1个,挑出最大的。于是我随机拿1个,再随机拿1个跟它比,留下大的,再随机拿1个……我每拿一次,留下的苹果都至少不比上次的小。拿的次数越多,挑出的苹果就越大,但我除非拿100次,否则无法肯定挑出了最大的。这个挑苹果的算法,就属于蒙特卡罗算法——尽量找好的,但不保证是最好的

而拉斯维加斯算法,则是另一种情况。假如有一把锁,给我100把钥匙,只有1把是对的。于是我每次随机拿1把钥匙去试,打不开就再换1把。我试的次数越多,打开(最优解)的机会就越大,但在打开之前,那些错的钥匙都是没有用的。这个试钥匙的算法,就是拉斯维加斯的——尽量找最好的,但不保证能找到

所以你看,这两个词并不深奥,它只是概括了随机算法的特性,算法本身可能复杂,也可能简单。

你可能感兴趣的:(策略与方法)