无监督学习文本使用到的技术(一)

概览:

1.doc2vec 训练句子向量

2.word2vec训练词向量

3.kmeans/dbscan训练句子聚类

4.tfidf寻找关键信息。

5.LDA主题文本聚类

组合使用:

doc2vec+tfidf+kmeans

 

先从doc2vec谈起来:

  1.文本分词 jieba/hanlp

  2.建立分词和下标id

 ## words_list = ['aaa','bbb']

 ## tags = 1

document = TaggedDocument(words=words_list, tags=[i])

  类似于(['aaa','bbb'],1),(['ccc','ddd'],2) 这种方式进行数据输入训练。

  训练代码可以如下所示:

#coding:utf-8
#使用doc2vec 判断文档相似性
from gensim import models,corpora,similarities
import jieba.posseg as pseg
from gensim.models.doc2vec import TaggedDocument,Doc2Vec
import os
import gensim.models as g

vector_size = 300
window_size = 5
min_count = 1
sampling_threshold = 1e-5
negative_size = 5
train_epoch = 10
dm = 0 #0 = dbow; 1 = dmpv
worker_count = 1 #number of parallel processes

#output model
saved_path = "model.bin"

def a_sub_b(a,b):
    ret = []
    for el in a:
        if el not in b:
            ret.append(el)
    return ret
stop = [line.strip().decode('utf-8') for line in open('stopword.txt').readlines() ]

#读取文件
raw_documents=[]
walk = os.walk(os.path.realpath("E:\\E_all\\BaiduNetdiskDownload\\doc2vec-1-master\\data"))
for root, dirs, files in walk:
    for name in files:
        f = open(os.path.join(root, name), 'r',encoding='utf-8')
        raw = str(os.path.join(root, name))+" "
        raw += f.read()
        raw_documents.append(raw)

#构建语料库
corpora_documents = []
doc=[]            #输出时使用,用来存储未经过TaggedDocument处理的数据,如果输出document,前面会有u
for i, item_text in enumerate(raw_documents):
   words_list=[]
   item=(pseg.cut(item_text))
   for j in list(item):
      words_list.append(j.word)
   #words_list=a_sub_b(words_list,list(stop))
   document = TaggedDocument(words=words_list, tags=[i])
   corpora_documents.append(document)
   doc.append(words_list)
#创建model
# docs = g.doc2vec.TaggedDocument(corpora_documents)
model = g.Doc2Vec(corpora_documents, size=vector_size, window=window_size, min_count=min_count, sample=sampling_threshold, workers=worker_count, hs=0, dm=dm, negative=negative_size, dbow_words=1, dm_concat=1, iter=train_epoch)
print('#########', model.vector_size)
model.save(saved_path)

你可能感兴趣的:(算法,人工智能识别)