本章介绍的是Vector,主要学习方式是解读源码,将底层实现暴露给阅读者,这样学习更简单明了
##简介
Vector 是矢量队列,它是JDK1.0版本添加的类。 继承于AbstractList,实现了List, RandomAccess, Cloneable这些接口。 Vector 继承了AbstractList,实现了List; 所以,它是一个队列,支持相关的添加、删除、修改、遍历等功能。
Vector 实现了RandmoAccess接口,即提供了随机访问功能。
Vector中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。
Vector 实现了Cloneable接口,即实现clone()函数。它能被克隆。
###构造函数
Vector共有4个构造函数
默认构造函数
Vector() //默认长度为10
Vector(int capacity, int capacityIncrement) //初始化默认长度,扩展增额度
Vector(int initialCapacity) //初始化默认长度
Vector(Collection< ? extends E> c)//赋值集合
capacity是Vector的默认容量大小。当由于增加数据导致容量增加时,每次容量会增加一倍。
###数据结构
Vector的数据结构和ArrayList差不多,它包含了3个成员变量:elementData , elementCount, capacityIncrement。
01) elementData 是"Object[]类型的数组",它保存了添加到Vector中的元素。
随着Vector中元素的增加,Vector的容量也会动态增长,capacityIncrement是与容量增长相关的增长系数,具体的增长方式, 请参考源码分析中的ensureCapacity()函数。
(02) elementCount 是动态数组的实际大小。.
(03) capacityIncrement 是动态数组的增长系数。如果在创建Vector时,指定了capacityIncrement的大小;则,每次当Vector中动态数组容量增加时>,增加的大小都是capacityIncrement。
###总结
(01) Vector实际上是通过一个数组去保存数据的。 当我们构造Vecotr时;若使用默认构造函数,则Vector的默认容量大小是10。
(02) 当Vector容量不足以容纳全部元素时,Vector的容量会增加。 若容量增加系数 >0,则将容量的值增加“容量增加系数”; 否则,将容量大小增加一倍。
(03) Vector的克隆函数,即是将全部元素克隆到一个数组中。
为什么Vector线程安全
因为在底层实现上进行了加锁,
缺点:效率低
###源码阅读
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
//构造函数
public class Vector
extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
protected Object[] elementData;
protected int elementCount;
protected int capacityIncrement;
private static final long serialVersionUID = -2767605614048989439L;
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0){
throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//构造函数
public Vector() {
this(10);
}
//构造函数
public Vector(Collection extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
//拷贝数组
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
//去除多余空位
public synchronized void trimToSize() {
modCount++;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
//确保性能
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
modCount++;
}
}
// overflow-conscious code
private void ensureCapacityHelper(int minCapacity) {
if (minCapacity - elementData.length > 0)
}
//自动扩容
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
//负载额度
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE;
}
//设置容量长度
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
//得到容量长度
public synchronized int capacity() {
return elementData.length;
}
//得到容量
public synchronized int size() {
return elementCount;
}
//是否是空
public synchronized boolean isEmpty() {
return elementCount == 0;
}
//节点集合
public Enumeration elements() {
return new Enumeration() {
int count = 0;
public boolean hasMoreElements() {
}
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
}
};
}
//包含
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
//元素索引位置
public int indexOf(Object o) {
return indexOf(o, 0);
}
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//元素索引最后位置
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i; } else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
}
return -1;
}
//索引位置元素
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +elementCount);
}
elementData[index] = obj;
}
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
public synchronized void removeAllElements() {
modCount++;
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector v = (Vector) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
//转化成数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
@SuppressWarnings("unchecked")
public synchronized T[] toArray(T[] a) {
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
public boolean remove(Object o) {
return removeElement(o);
}
public void add(int index, E element) {
insertElementAt(element, index);
}
public synchronized E remove(int index) {
modCount++; if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work return oldValue; }
public void clear() {
removeAllElements(); }
public synchronized boolean containsAll(Collection> c) {
return super.containsAll(c); }
public synchronized boolean addAll(Collection extends E> c) {
modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; }
public synchronized boolean removeAll(Collection> c) {
return super.removeAll(c); }
public synchronized boolean retainAll(Collection> c) {
return super.retainAll(c); }
public synchronized boolean addAll(int index, Collection extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew; return numNew != 0; }
public synchronized boolean equals(Object o) {
return super.equals(o); }
public synchronized int hashCode() {
return super.hashCode(); }
public synchronized String toString() {
return super.toString(); }
public synchronized List subList(int fromIndex, int toIndex) {
return
Collections.synchronizedList(super.subList(fromIndex, toIndex), this);
}
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // Let gc do its work int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount)
elementData[--elementCount] = null; }
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) {
fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); }
fields.put("elementData", data); s.writeFields(); }
public synchronized ListIterator listIterator(int index) {
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); }
public synchronized ListIterator listIterator() {
return new ListItr(0); }
public synchronized Iterator iterator() {
return new Itr(); }
private class Itr implements Iterator {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != elementCount; }
public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i); }
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException(); synchronized (Vector.this) {
checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; }
cursor = lastRet; lastRet = -1; }
@Override public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action); synchronized (Vector.this) {
final int size = elementCount; int i = cursor; if (i >= size) {
return; }
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) Vector.this.elementData; if (i >= elementData.length) {
throw new ConcurrentModificationException(); }
while (i != size && modCount == expectedModCount) {
action.accept(elementData[i++]); }
// update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); }
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException(); }
}
final class ListItr extends Itr implements ListIterator {
ListItr(int index) {
super(); cursor = index; }
public boolean hasPrevious() {
return cursor != 0; }
public int nextIndex() {
return cursor; }
public int previousIndex() {
return cursor - 1; }
public E previous() {
synchronized (Vector.this) {
checkForComodification(); int i = cursor - 1; if (i < 0)
throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); }
}
public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException(); synchronized (Vector.this) {
checkForComodification(); Vector.this.set(lastRet, e); }
}
public void add(E e) {
int i = cursor; synchronized (Vector.this) {
checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; }
cursor = i + 1; lastRet = -1; }
}
@Override public synchronized void forEach(Consumer super E> action) {
Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData; final int elementCount = this.elementCount; for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
action.accept(elementData[i]); }
if (modCount != expectedModCount) {
throw new ConcurrentModificationException(); }
}
@Override @SuppressWarnings("unchecked")
public synchronized boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final int size = elementCount; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i]; if (filter.test(element)) {
removeSet.set(i); removeCount++; }
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException(); }
// shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) {
final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; }
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work }
elementCount = newSize; if (modCount != expectedModCount) {
throw new ConcurrentModificationException(); }
modCount++; }
return anyToRemove; }
@Override @SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator operator) {
Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = elementCount; for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]); }
if (modCount != expectedModCount) {
throw new ConcurrentModificationException(); }
modCount++; }
@SuppressWarnings("unchecked")
@Override public synchronized void sort(Comparator super E> c) {
final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, elementCount, c); if (modCount != expectedModCount) {
throw new ConcurrentModificationException(); }
modCount++; }
@Override public Spliterator spliterator() {
return new VectorSpliterator<>(this, null, 0, -1, 0); }
static final class VectorSpliterator implements Spliterator {
private final Vector list; private Object[] array; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one
VectorSpliterator(Vector list, Object[] array, int origin, int fence, int expectedModCount) {
this.list = list; this.array = array; this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; }
private int getFence() { // initialize on first use int hi; if ((hi = fence) < 0) {
synchronized(list) {
array = list.elementData; expectedModCount = list.modCount; hi = fence = list.elementCount; }
}
return hi; }
public Spliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null :
new VectorSpliterator(list, array, lo, index = mid, expectedModCount); }
@SuppressWarnings("unchecked")
public boolean tryAdvance(Consumer super E> action) {
int i; if (action == null)
throw new NullPointerException(); if (getFence() > (i = index)) {
index = i + 1; action.accept((E)array[i]); if (list.modCount != expectedModCount)
throw new ConcurrentModificationException(); return true; }
return false; }
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> action) {
int i, hi; // hoist accesses and checks from loop Vector lst; Object[] a; if (action == null)
throw new NullPointerException(); if ((lst = list) != null) {
if ((hi = fence) < 0) {
synchronized(lst) {
expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; }
}
else a = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
while (i < hi)
action.accept((E) a[i++]); if (lst.modCount == expectedModCount)
return; }
}
throw new ConcurrentModificationException(); }
public long estimateSize() {
return (long) (getFence() - index); }
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; }
}
}