- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- Matlab实现BP-NSGA-II多目标预测优化方法
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:本文涉及将遗传算法优化的BP神经网络与NSGA-II相结合,应用于多目标预测问题的解决。主要内容包括BP神经网络的学习原理、适应度函数的设计与应用、NSGA-II在多目标优化中的作用、多目标预测的策略以及Matlab工具在算法实现中的使用。本文旨在通过这些技术,帮助读者构建出能在多个相互冲突的目标间取得平衡的优化解决方案,并提供完整的Matlab代码实现,以供
- 高效的嵌入式系统架构设计
迷璃学妹
系统架构
高效的嵌入式系统架构设计1.高效的嵌入式系统架构设计2.算法优化1.高效的嵌入式系统架构设计设计高效的嵌入式系统架构是确保系统性能和能效的关键。以下是一些关键点:模块化设计:将系统划分为多个模块,每个模块负责特定的功能,便于管理和维护。低功耗设计:采用低功耗组件和技术,如睡眠模式、动态电压调节等,以降低系统的能耗。实时性要求:针对实时性要求高的应用,需要设计合适的实时调度算法和任务管理机制。通信接
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- 【HLOA-BP】基于角蜥蜴算法优化BP神经网络的风电功率预测研究(Matlab代码实现)
@橘柑橙柠桔柚
算法神经网络matlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法三、研究挑战与展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。
- 基于STM32的智能物料运载小车:OpenMV和OpenCV结合图像识别与运动控制算法优化(代码示例)
极客小张
stm32opencv嵌入式硬件系统架构物联网c语言机器人
一、项目概述智能物料运载小车项目旨在开发一款能够自主移动并进行物料搬运的智能设备。该小车通过多种传感器和智能控制算法,实现自动识别和搬运物料,提高物流效率,减少人工成本。项目的核心价值在于:提高效率:通过自动化搬运,减少人力需求,提升工作效率。降低错误率:利用传感器和图像处理技术,确保物料的准确搬运。增加灵活性:全方位移动能力使小车能够在复杂环境中自如穿行。二、系统架构1.系统架构设计本项目的系统
- 基于STM32的工厂安全监测系统:采用FreeRTOS、MQTT协议、InfluxDB存储与Grafana可视化,实现实时数据监测与异常检测算法优化的综合解决方案(代码示例)
极客小张
stm32安全grafana算法物联网c++异常检测算法
一、项目概述项目目标与用途随着工业自动化的不断推进,工厂的安全问题成为了企业管理者关注的重点。工厂中的温度、湿度、气体浓度、烟雾、压力等环境参数直接影响着生产的安全性和产品的质量。本项目旨在设计并实现一个嵌入式工厂安全监测系统,实时监测工厂环境中的关键安全参数,通过无线通信模块将数据传输到云端进行存储和分析,从而实现对工厂环境的智能化监控和预警。项目解决的问题与价值实时监测:实时采集工厂内的温度、
- 选择排序【详解】
圣喵
排序典型例题C语言排序算法算法c语言
本期介绍主要介绍:排序中的选择排序。文章目录1.前言2.选择排序3.优化选择排序1.前言 相信只要接触过C语言的同学都或多或少了解排序问题,其中最基本,且最为人所熟知的排序是:选择排序。下面我会带着大家重新把这种排序方法走一遍,使你能够透彻的理解这两种算法的原理,能把它们清晰的区分开,并且分别实现这两种排序的算法优化。2.选择排序 选择排序的原理:每趟都从剩余待排序的数组元素种选出最小(或最大
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 【LSTM回归预测】遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测【含Matlab源码 3738期】
Matlab领域
matlab
⛄一、遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利用深度学习技术来进行风电预测。在本文中,我们将介绍一种基于遗传优化注意力机制的长短时记忆神经网络(GA-attention-LSTM
- 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解
天天Matlab代码科研顾问
预测模型matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍信号处理是现代科学技术中的重要组成部分,而信号去噪作为信号处理的一个重要分支,在许多领域中都有着广泛的
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 基于北方苍鹰算法优化CNN-BiGUR-Attention风电功率预测研究(Matlab代码实现)
然哥爱编程
算法cnnmatlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.模型组成2.研究步骤三、研究成果与应用前景四、结论2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,
- 【matlab】分类回归——智能优化算法优化径向基神经网络
passion更好
机器学习智能优化算法算法matlab分类
目录径向基(RadialBasisFunction,RBF)神经网络一、基本概念二、网络结构三、工作原理四、学习算法五、优点与应用六、与BP神经网络的比较智能优化算法常见的智能优化算法灰狼优化算法(GreyWolfOptimizer,GWO)一、算法原理二、算法流程三、算法特点四、应用场景代码实现定义目标函数主函数径向基(RadialBasisFunction,RBF)神经网络一、基本概念径向基函
- 推荐大家学习JAVA结合Al
海带土豆
开发语言java学习
AI辅助下的Java学习计划目标设定-**初级阶段**:掌握Java基础语法,理解面向对象编程思想。-**进阶阶段**:熟练运用集合、多线程、网络编程等高级特性。-**实战项目**:完成至少两个综合项目,利用AI辅助提升代码质量和开发效率。-**理论深化**:深入学习Java虚拟机(JVM)原理、设计模式及算法优化。学习资源与AI工具推荐-**在线课程**:Coursera《JavaProgram
- 麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测,麻雀优化算法改进BP神经网络客流量预测
神经网络机器学习智能算法画图绘图
BP神经网络算法神经网络回归麻雀优化算法改进BP神经网络短期客流量预测
目录背影BP神经网络的原理BP神经网络的定义BP神经网络的基本结构BP神经网络的神经元BP神经网络的激活函数,BP神经网络的传递函数麻雀算法原理麻雀算法主要参数麻雀算法流程图麻雀算法优化测试函数代码麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测数据matlab编程实现效果图结果分析展望完整代码数据文件下载链接:(代码完整,数据齐全)资源-CSDN文库https://downlo
- Python系列(17)—— 位运算符
隐私无忧
万花筒#Pythonpython
Python中的位运算符(BitwiseOperator)一、引言位运算符是直接对整数的二进制位进行操作的运算符。在Python中,位运算符可以对整数进行位级别的运算,如按位与(AND)、按位或(OR)、按位异或(XOR)、按位取反(NOT)等。这些运算符在底层系统编程、算法优化、网络通信等领域有广泛的应用。二、位运算符介绍按位与(&):对应位都为1时,结果位才为1,否则为0。按位或(|):对应位
- 基于WOA优化的Bi-LSTM多输入时序回归预测(Matlab)鲸鱼算法优化双向长短期神经网络时序回归预测
神经网络与数学建模
机器学习与神经网络神经网络matlab回归预测时序鲸鱼优化算法深度学习
目录一、程序及算法内容介绍:基本内容:亮点与优势:二、实际运行效果:三、算法介绍:鲸鱼优化算法(WOA):双向长短期神经网络(Bi-LSTM):四、完整程序下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将WOA(鲸鱼优化算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据时序回归预测输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多
- 基于WOA优化的Bi-LSTM多输入回归预测(Matlab)鲸鱼算法优化双向长短期神经网络回归预测
神经网络与数学建模
机器学习与神经网络神经网络matlab回归预测双向长短期记忆网络LSTM经与优化算法深度学习
目录一、程序及算法内容介绍:基本内容:亮点与优势:二、实际运行效果:三、算法介绍:鲸鱼优化算法(WOA):双向长短期神经网络(Bi-LSTM):四、完整程序下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将WOA(鲸鱼优化算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据回归预测输入训练的数据包含7个特征,1个响应值,即通过7个输入值预测1个输出值(多变量
- 基于WOA优化的Bi-LSTM多输入分类预测(Matlab)鲸鱼算法优化双向长短期神经网络分类预测
神经网络与数学建模
机器学习与神经网络神经网络lstmmatlab分类深度学习鲸鱼优化算法双向长短期神经网络
目录一、程序及算法内容介绍:基本内容:亮点与优势:二、实际运行效果:三、算法介绍:鲸鱼优化算法(WOA):双向长短期神经网络(Bi-LSTM):四、完整代码+数据下载:一、程序及算法内容介绍:基本内容:本代码基于Matlab平台编译,将WOA(鲸鱼优化算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据分类预测输入训练的数据包含12个特征,1个响应值,即通过12个输入值预测1个输出
- GA-kmedoid 遗传算法优化K-medoids聚类
2301_78492934
机器学习支持向量机人工智能matlab聚类
遗传算法优化K-medoids聚类是一种结合了遗传算法和K-medoids聚类算法的优化方法。遗传算法是一种基于自然选择和遗传机制的随机优化算法,它通过模拟生物进化过程中的遗传、交叉、变异等操作来寻找问题的最优解。而K-medoids聚类算法是一种基于划分的聚类方法,它通过选择K个数据点作为簇中心,将数据点分配到最近的簇中心,以最小化每个数据点到其所属簇中心的距离之和。K-medoids聚类算法是
- 【GRU回归预测】麻雀算法优化注意力机制卷积神经网络结合双向门控循环单元SSA-Attention-CNN-BiGRU数据预测(多输入多输出)【含Matlab源码 3905期】
Matlab领域
matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 【BP回归预测】基于粒子群算法优化BP神经网络车位预测附Matlab代码
matlab科研助手
神经网络预测算法回归神经网络
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要随着城市化进程的不断加快,城市交通拥堵问题日益严重,车位资源的稀缺成为影响城市交通顺畅的重要因素。
- 【GRU回归预测】基于麻雀算法优化双向门控循环单元SSA-BiGRU神经网络实现多输入单输出回归预测附matlab代码...
天天Matlab代码科研顾问
算法gru回归神经网络matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍在机器学习和人工智能的领域中,回归预测是一项重要的任务。它涉及利用历史数据来预测未来的连续值。最近,一种基于麻雀算
- 基于生物地理学算法优化卷积神经网络结合支持向量机BBO-CNN-SVM实现瓦斯数据回归预测附Matlab代码
天天Matlab代码科研顾问
预测模型算法cnn支持向量机
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要:瓦斯数据回归预测是煤矿安全生产的重要环节,对煤矿瓦斯治理具有重要意义。本文提出了一种基于生物地理
- 【MATLAB】鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法
Lwcah
MATLAB回归预测算法算法matlab回归
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义鲸鱼算法优化混合核极限学习机(WOA-HKELM)回归预测算法是一种结合鲸鱼优化算法和混合核极限学习机的混合算法。其原理主要包含以下几个步骤:初始化:设定鲸鱼群体的初始位置及速度,设定混合核极限学习机的初始参数。计算适应度:根据目标函数值计算每只鲸鱼的适应度,并根据适应度选择最优解。更新位置和速度:根据鲸鱼的适应度和目标函数值
- 【风电预测】基于Logistic混沌映射改进的麻雀算法优化BP神经网络风电功率预测附Matlab代码
前程算法matlab屋
预测模型算法神经网络matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要风电功率预测在风电场运行和电网调度中至关重要。本文提出了一种基于Logistic混沌映射改进的麻雀
- 字符串相关题目总结
CCloth
算法哈希算法数据结构
5.最长回文子串挺经典的题目,写法也很多种,最简单的做法直接O(n^2)枚举子串,再遍历子串看是否回文,整体复杂度O(n^3)。判断子串回文的过程可以用字符串哈希优化到O(1),这样整体复杂度为O(n^2)。接下来还可以用二分进一步优化,二分回文串长度就行了,二分check里面遍历一遍看是否存在这个长度的回文串,整体复杂度为O(nlogn)。最后可以用马拉车算法优化到O(n),马拉车就是为了解决这
- 【图像分割】基于粒子群算法优化最大类间方差PSO-OTSU图像分割算法研究附Matlab代码
天天Matlab代码科研顾问
图像处理算法matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要图像分割是计算机视觉领域的一项基本任务,其目的是将图像划分为具有相似特征的区域。最大类间方差(OT
- 【GRU回归预测】开普勒算法优化多头注意力机制卷积神经网络结合门控循环单元KOA-MultiAttention-CNN-GRU数据预测(多输入单输出)【含Matlab源码 3772期】
Matlab领域
matlab
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab仿真内容点击Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比