为什么要使用智能指针:
智能指针的作用是管理一个指针,因为存在以下这种情况:申请的空间在函数结束时忘记释放,造成内存泄漏。使用智能指针可以很大程度上的避免这个问题,因为智能指针就是一个类,当超出了类的作用域是,类会自动调用析构函数,析构函数会自动释放资源。所以智能指针的作用原理就是在函数结束时自动释放内存空间,不需要手动释放内存空间。
采用所有权模式
auto_ptr< string> p1 (new string ("I reigned lonely as a cloud.”));
auto_ptr p2;
p2 = p1; //auto_ptr不会报错.
此时不会报错,p2剥夺了p1的所有权,但是当程序运行时访问p1将会报错。所以auto_ptr的缺点是:存在潜在的内存崩溃问题!
unique_ptr实现独占式拥有或严格拥有概念,保证同一时间内只有一个智能指针可以指向该对象。它对于避免资源泄露(例如“以new创建对象后因为发生异常而忘记调用delete”)特别有用
采用所有权模式,还是上面那个例子
unique_ptr p3 (new string ("auto")); //#4
unique_ptr p4; //#5
p4 = p3;//此时会报错!!
编译器认为p4=p3非法,避免了p3不再指向有效数据的问题。因此,unique_ptr比auto_ptr更安全。
另外unique_ptr还有更聪明的地方:当程序试图将一个 unique_ptr 赋值给另一个时,如果源 unique_ptr 是个临时右值,编译器允许这么做;如果源 unique_ptr 将存在一段时间,编译器将禁止这么做,比如:
unique_ptr pu1(new string ("hello world"));
unique_ptr pu2;
pu2 = pu1; // #1 not allowed
unique_ptr pu3;
pu3 = unique_ptr(new string ("You")); // #2 allowed
其中#1留下悬挂的unique_ptr(pu1),这可能导致危害。而#2不会留下悬挂的unique_ptr,因为它调用 unique_ptr 的构造函数,该构造函数创建的临时对象在其所有权让给 pu3 后就会被销毁。这种随情况而已的行为表明,unique_ptr 优于允许两种赋值的auto_ptr 。
unique_ptr ps1(new string ("hello world"));
unique_ptr ps2;
ps2 = move(ps1);
ps1 = unique_ptr(new string ("You"));
cout << *ps2 <
要确保用 new 动态分配的内存空间在程序的各条执行路径都能被释放是一件麻烦的事情。C++ 11 模板库的 头文件中定义的智能指针,即 shared _ptr 模板,就是用来部分解决这个问题的。
只要将 new 运算符返回的指针 p 交给一个 shared_ptr 对象“托管”,就不必担心在哪里写delete p
语句——实际上根本不需要编写这条语句,托管 p 的 shared_ptr 对象在消亡时会自动执行delete p
。而且,该 shared_ptr 对象能像指针 p —样使用,即假设托管 p 的 shared_ptr 对象叫作 ptr,那么 *ptr 就是 p 指向的对象。
通过 shared_ptr 的构造函数,可以让 shared_ptr 对象托管一个 new 运算符返回的指针,写法如下:
shared_ptr ptr(new T); // T 可以是 int、char、类等各种类型
此后,ptr 就可以像 T* 类型的指针一样使用,即 *ptr 就是用 new 动态分配的那个对象。
多个 shared_ptr 对象可以共同托管一个指针 p,当所有曾经托管 p 的 shared_ptr 对象都解除了对其的托管时,就会执行delete p
。
#include
#include
using namespace std;
class A
{
public:
int i;
A(int n):i(n) { };
~A() { cout << i << " " << "destructed" << endl; }
};
int main()
{
shared_ptr sp1(new A(2)); //A(2)由sp1托管,
shared_ptr sp2(sp1); //A(2)同时交由sp2托管
shared_ptr sp3;
sp3 = sp2; //A(2)同时交由sp3托管
cout << sp1->i << "," << sp2->i <<"," << sp3->i << endl;
A * p = sp3.get(); // get返回托管的指针,p 指向 A(2)
cout << p->i << endl; //输出 2
sp1.reset(new A(3)); // reset导致托管新的指针, 此时sp1托管A(3)
sp2.reset(new A(4)); // sp2托管A(4)
cout << sp1->i << endl; //输出 3
sp3.reset(new A(5)); // sp3托管A(5),A(2)无人托管,被delete
cout << "end" << endl;
return 0;
}
程序的输出结果如下:
2,2,2
2
3
2 destructed
end
5 destructed
4 destructed
3 destructed
可以用第 14 行及第 16 行的形式让多个 sharecLptr 对象托管同一个指针。这多个 shared_ptr 对象会共享一个对共同托管的指针的“托管计数”。有 n 个 shared_ptr 对象托管同一个指针 p,则 p 的托管计数就是 n。当一个指针的托管计数减为 0 时,该指针会被释放。shared_ptr 对象消亡或托管了新的指针,都会导致其原托管指针的托管计数减 1。
第 20、21 行,shared_ptr 的 reset 成员函数可以使得对象解除对原托管指针的托管(如果有的话),并托管新的指针。原指针的托管计数会减 1。
输出的第 4 行说明,用 new 创建的动态对象 A(2) 被释放了。程序中没有写 delete 语句,而 A(2) 被释放,是因为程序的第 23 行执行后,已经没有 shared_ptr 对象托管 A(2),于是 A(2) 的托管计数变为 0。最后一个解除对 A(2) 托管的 shared_ptr 对象会释放 A(2)。
main 函数结束时,sp1、sp2、sp3 对象消亡,各自将其托管的指针的托管计数减为 0,并且释放其托管的指针,于是会有以下输出:
5 destructed
4 destructed
3 destructed
只有指向动态分配的对象的指针才能交给 shared_ptr 对象托管。将指向普通局部变量、全局变量的指针交给 shared_ptr 托管,编译时不会有问题,但程序运行时会出错,因为不能析构一个并没有指向动态分配的内存空间的指针。
注意,不能用下面的方式使得两个 shared_ptr 对象托管同一个指针(第二个shared_ptr 对象必须通过已经托管的shared_ptr 对象进行托管同一指针):
A* p = new A(10);
shared_ptr sp1(p), sp2(p);
sp1 和 sp2 并不会共享同一个对 p 的托管计数,而是各自将对 p 的托管计数都记为 1(sp2 无法知道 p 已经被 sp1 托管过)。这样,当 sp1 消亡时要析构 p,sp2 消亡时要再次析构 p,这会导致程序崩溃。
weak_ptr 是一种不控制对象生命周期的智能指针, 它指向一个 shared_ptr 管理的对象. 进行该对象的内存管理的是那个强引用的 shared_ptr. weak_ptr只是提供了对管理对象的一个访问手段。weak_ptr 设计的目的是为配合 shared_ptr 而引入的一种智能指针来协助 shared_ptr 工作, 它只可以从一个 shared_ptr 或另一个 weak_ptr 对象构造, 它的构造和析构不会引起引用记数的增加或减少。weak_ptr是用来解决shared_ptr相互引用时的死锁问题,如果说两个shared_ptr相互引用,那么这两个指针的引用计数永远不可能下降为0,资源永远不会释放。它是对对象的一种弱引用,不会增加对象的引用计数,和shared_ptr之间可以相互转化,shared_ptr可以直接赋值给它,它可以通过调用lock函数来获得shared_ptr。
class B;
class A
{
public:
shared_ptr pb_;
~A()
{
cout<<"A delete\n";
}
};
class B
{
public:
shared_ptr pa_;
~B()
{
cout<<"B delete\n";
}
};
void fun()
{
shared_ptr pb(new B());
shared_ptr pa(new A());
pb->pa_ = pa;
pa->pb_ = pb;
cout<
可以看到fun函数中pa ,pb之间互相引用,两个资源的引用计数为2,当要跳出函数时,智能指针pa,pb析构时两个资源引用计数会减一,但是两者引用计数还是为1,导致跳出函数时资源没有被释放(A B的析构函数没有被调用),如果把其中一个改为weak_ptr就可以了,我们把类A里面的shared_ptr pb_; 改为weak_ptr pb_; 运行结果如下,这样的话,资源B的引用开始就只有1,当pb析构时,B的计数变为0,B得到释放,B释放的同时也会使A的计数减一,同时pa析构时使A的计数减一,那么A的计数为0,A得到释放。
注意的是我们不能通过weak_ptr直接访问对象的方法,比如B对象中有一个方法print(),我们不能这样访问,pa->pb_->print(); 英文pb_是一个weak_ptr,应该先把它转化为shared_ptr,如:shared_ptr p = pa->pb_.lock(); p->print();