hdu4587 求割点变形

http://acm.hdu.edu.cn/showproblem.php?pid=4587

Problem Description
Suppose that G is an undirected graph, and the value of  stab is defined as follows:

Among the expression,G -i, -j is the remainder after removing node i, node j and all edges that are directly relevant to the previous two nodes.  cntCompent is the number of connected components of X independently.
Thus, given a certain undirected graph G, you are supposed to calculating the value of  stab.
 

Input
The input will contain the description of several graphs. For each graph, the description consist of an integer N for the number of nodes, an integer M for the number of edges, and M pairs of integers for edges (3<=N,M<=5000).
Please note that the endpoints of edge is marked in the range of [0,N-1], and input cases ends with EOF.
 

Output
For each graph in the input, you should output the value of  stab.
 

Sample Input
 
   
4 5 0 1 1 2 2 3 3 0 0 2
 

Sample Output
 
   
2

/**
hdu4587 求割点变形
题目大意:给定一个图,去掉其中哪两点后能得到最多的连通块,是多少
解题思路:枚举去掉第一个点,然后利用求割点的模板就可以求出去掉另一点后的答案,取最多即可
*/
#include 
#include 
#include 
#include 
using namespace std;
const int maxn=5010;

struct note
{
    int v,next;
    bool cut;
} edge[maxn*2];

int head[maxn],ip;

void init()
{
    memset(head,-1,sizeof(head));
    ip=0;
}

int low[maxn],dfn[maxn],st[maxn],dex,top;
bool inst[maxn],cut[maxn];
int add_block[maxn];
int bridge;
int n,m,now;

void addedge(int u,int v)
{
    edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++;
}

void tarjan(int u,int pre)
{
    low[u]=dfn[u]=++dex;
    st[top++]=u;
    inst[u]=true;
    int son=0;
    for(int i=head[u]; i!=-1; i=edge[i].next)
    {
        int v=edge[i].v;
        if(v==pre)continue;
        if(v==now)continue;
        if(!dfn[v])
        {
            son++;
            tarjan(v,u);
            if(low[u]>low[v])low[u]=low[v];
            if(low[v]>dfn[u])
            {
                bridge++;
                edge[i].cut=true;
                edge[i^1].cut=true;
            }
            if(u!=pre&&low[v]>=dfn[u])
            {
                cut[u]=true;
                add_block[u]++;
            }
        }
        else if(low[u]>dfn[v])
        {
            low[u]=dfn[v];
        }
    }
    if(u==pre&&son>1)cut[u]=true;
    if(u==pre)add_block[u]=son-1;
    inst[u]=false;
    top--;
}

int solve()
{
    memset(dfn,0,sizeof(dfn));
    memset(inst,false,sizeof(inst));
    memset(add_block,0,sizeof(add_block));
    memset(cut,false,sizeof(cut));
    dex=top=0;
    bridge=0;
    int cnt=0;
    for(int i=0;i


你可能感兴趣的:(连通性,图论)