- LoadRunner 11 性能测试全面教程
金融先生-Frank
本文还有配套的精品资源,点击获取简介:LoadRunner11(LR11)是HP开发的一款企业级性能测试工具,支持多应用程序类型的负载测试,用于性能评估、瓶颈识别和系统优化。教程详细介绍LR11的组件功能、脚本开发、场景设置、测试执行、结果分析、性能指标监测、故障诊断以及自动化测试等,提供从初级到高级的完整学习路径。1.LoadRunner11(LR11)功能概述LoadRunner11(LR11
- mysql数据库应用与开发姜桂洪 课后答案_清华大学出版社-图书详情-《MySQL数据库应用与开发》...
韦盛江
课后答案
前言Oracle公司的MySQL是目前最流行的关系数据库管理系统之一。MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言。MySQL数据库以其精巧灵活、运行速度快、经济适用性强、开放源码等优势,作为网站数据库获得许多中小型网站的开发公司的青睐。MySQL性能卓越,搭配PHP和Apache可组成良好的软件开发环境,并且已经大量部署到中小型企业和高校的教学平台。本书从教学实际需求出发,结合
- Vue.js 中的 Memoization:提升性能的缓存技术
vvilkim
vuevue.js前端javascript
在现代前端开发中,性能优化是一个永恒的话题。随着应用规模的增大,复杂的计算和频繁的函数调用可能会导致性能瓶颈。Vue.js作为一个流行的前端框架,提供了多种优化手段,其中memoization(记忆化)就是一种非常有效的技术。本文将详细介绍Vue.js中的memoization,以及如何利用它来提升应用性能。什么是Memoization?Memoization是一种优化技术,通过缓存函数的结果来避
- Vue.js 性能优化:虚拟 DOM 与虚拟滚动
vvilkim
vuevue.js前端javascript
在现代前端开发中,性能优化是一个永恒的话题。Vue.js作为一款流行的前端框架,提供了许多强大的工具和技术来提升应用的性能。其中,虚拟DOM和虚拟滚动是两个非常重要的概念。本文将深入探讨它们的原理、优势以及如何在Vue.js中使用它们来优化性能。什么是虚拟DOM?虚拟DOM(VirtualDOM)是Vue.js用于提升性能的核心技术之一。它是一个轻量级的JavaScript对象树,用于表示真实DO
- 使用大语言模型API在AI应用中的实现
qq_37836323
人工智能语言模型自然语言处理python
随着人工智能技术的迅速发展,大语言模型(LLM)在自然语言处理(NLP)领域的应用越来越广泛。本文将介绍如何使用大语言模型API来实现一些基础的AI应用,并提供一个简单的demo代码,帮助大家更好地理解和使用这些技术。大语言模型API简介大语言模型(如GPT-4)能够理解和生成类似人类的文本。这些模型可以应用于各种任务,包括文本生成、语言翻译、情感分析、对话系统等。为了方便国内用户访问这些强大的模
- Vscode niuhe 插件使用教程 - xorm 代码生成
诗意地回家
niuhe插件vscodeide编辑器
官方教程已经上线,请访问:http://niuhe.zuxing.net本文相关项目:vue3-element-admin基于niuhe插件的管理后台模板niuhe-mdbookniuhe插件示例项目在日常开发中,新增数据库表时通常需要编写大量重复的增删改查代码。为提高开发效率,niuhe插件0.3.4版本新增Xorm基础代码生成功能,可自动生成:数据库表对应的Golang模型结构体基础CURD操
- AlphaFolding填补蛋白质动态结构预测空白!复旦大学等提出4D扩散模型,成果入选AAAI 2025
HyperAI超神经
ScienceAI人工智能深度学习机器学习扩散模型蛋白质结构AI4S4D
蛋白质的功能很大程度上取决于其3D结构。19世纪中期,科学界普遍认为蛋白质结构是固定的、刚性的,类似「锁与钥匙」模型(lock-and-keymodel),即蛋白质与配体的结合是由固定的三维结构决定的。然而,当DanielKoshland提出酶与底物结合时会发生构象变化的观点后,传统思维开始受到挑战。1980年代,分子动力学模拟(MolecularDynamics,MD)兴起,首次从计算角度揭示了
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- 【深度学习】DeepSeek模型介绍与部署
Nerous_
深度学习深度学习人工智能
原文链接:DeepSeek-V31.介绍DeepSeek-V3,一个强大的混合专家(MoE)语言模型,拥有671B总参数,其中每个token激活37B参数。为了实现高效推理和成本效益的训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这些架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3首次提出了无辅助损失的负载平衡策略,并设置了多to
- 【NLP】 API在大语言模型中的应用
Nerous_
深度学习自然语言处理语言模型人工智能
大语言模型(LargeLanguageModels,LLMs)通过API(应用程序接口)为开发者提供了便捷的调用方式,使其能够快速集成自然语言处理能力到各类应用中。以下是API在LLM中的核心应用场景及技术实现细节:一、核心应用场景自然语言理解与生成应用示例:智能客服:解析用户问题并生成回复(如ChatGPTAPI)。内容创作:自动生成文章、广告文案或代码(如OpenAI的GPT-4)。技术实现:
- 软件工程(数据字典)
Rain:)
软件工程数据分析软件开发
数据字典数据字典是关于数据的信息的集合,也就是对数据流图中包含的所有元素的定义的集合。任何字典最主要的用这都是供人查阅对不了解的条目的解释,数据字典的作用也正是在软件分析和设计的过程中给人提供关于数据的描述信息。数据流图和数据字典共同构成系统的逻辑模型,没有数据字典,数据流图就不严格,然而没有数据流图,数据字典也难于发挥作用。只有数据流图和对数据流图中每个元素的精确定义放在一起,才能共同构成系统的
- 路由交换技术——多私网下NAPT、FTP服务公网映射配置的实验
「J1e」
网络网络协议tcp/ip
网络地址转换(NAT)技术概述1.定义与背景网络地址转换(NetworkAddressTranslation,NAT)是一种在IP数据包传输过程中修改源或目标IP地址及端口的技术,主要用于解决IPv4地址短缺问题。随着互联网设备激增,NAT通过允许多个设备共享单一公网IP地址,显著延缓了IPv4地址耗尽的速度。2.工作原理NAT的核心是通过中间设备(如路由器、防火墙)建立内网私有地址与外网公有地址
- 数据结构、图论---数组模拟单链表 邻接表
wow_awsl_qwq
数据结构数据结构图论链表
数组模拟链表或者所谓的邻接表,实际上都是静态链表,以数组下标模拟模拟内存地址,使得可以一开始就给数组分配好连续的一大片空间,而使用中的“内存分配”实际上就是变成了简单的idx++比赛中使用静态链表代替指针型链可以减少内存分配带来的时间消耗,并且使用方式也比较简单比赛中的单链表或者邻接表也可以用vector实现,达到动态内存分配的效果,其实就是类似于指针链表,不过使用方式也比较简单直观比如图论模型:
- HRM:分层多步奖励模型
大模型最新论文速读
深度学习语言模型人工智能自然语言处理
论文标题TowardsHierarchicalMulti-StepRewardModelsforEnhancedReasoninginLargeLanguageModels论文地址https://arxiv.org/pdf/2503.13551代码地址https://github.com/tengwang0318/hierarchial_reward_model作者背景香港大学,北京大学,新加坡国
- JVM垃圾回收器全面解析:从核心概念到选型指南
Debug Your Career
面试jvmjava
一、引言在Java应用运行过程中,垃圾回收(GarbageCollection,GC)是内存管理的核心机制,直接影响程序性能。JVM提供了多种垃圾回收器,适用于不同场景。本文将系统梳理主流垃圾回收器的工作原理、适用场景及选型策略。二、GC核心概念分代收集:堆内存分为新生代(YoungGeneration)和老年代(OldGeneration),采用不同回收策略。STW(Stop-The-World
- 进制转换(2互转8/16)(1293. 二进制转换八进制、1294. 二进制转十六进制、1359. 八进制转换二进制、1306. 十六进制转二进制、1295. 十六进制转换)
是帅帅的少年
东方博宜OJ题库解析c++
题单地址:题单中心-东方博宜OJ2进制转换8/16进制使用方法是分组法:因为3位2进制数最大是7,4位2进制最大是15,分别满足8进制与16进制的性质,所以3位2进制数=1位8进制数;4位2进制数=1位16进制数。8/16进制转换2进制使用方法是展开法:上面提到3位2进制数=1位8进制数;4位2进制数=1位16进制数,所以每1位的8/16进制数都可以展开为对应的2进制位数。1293.二进制转换八进
- 【DNN量化工具】QKeras 工具简介
kanhao100
笔记dnn人工智能神经网络
QKeras工具简介QKeras是一个用于量化深度学习模型的Keras扩展库,旨在使深度学习模型的量化(即将模型的浮点权重转换为低精度格式)变得简单而高效。QKeras主要目标是优化模型的存储和推理速度,特别适用于需要在资源受限的设备(如移动设备和嵌入式系统)上运行深度学习模型的场景。QKeras的主要特点量化支持:QKeras提供了对不同类型量化的支持,包括权重量化和激活量化。用户可以根据需求选
- 亿级分布式系统架构演进实战(一)- 总体概要
power-辰南
java技术架构师成长专栏高并发分布式系统微服务架构设计springcloud
前言不说废话,这次分享是某500强企业真实亿级流量业务中台技术架构演进过程实战。核心目标构建一个兼具高性能、高可用、强一致性的分布式系统,支撑亿级流量场景下的稳定运行。演进路线大纲阶段一:横向扩展(应对万级QPS)核心目标:突破单机性能瓶颈,建立弹性基础[Nginx]/|\[App1][App2][App3]←无状态服务集群\|/[DBProxy]←读写分离中间件/\[Master]←写节点[Sl
- 亿级分布式系统架构演进实战(三)- 横向扩展(数据库读写分离)
power-辰南
java技术架构师成长专栏数据库mysql分布式系统springcloud架构设计
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)核心目标分散数据库压力,提升读性能1.数据库架构设计数据库由原理的单实例变成主从模式,主主要负责写,从负责读。1.1主从角色定义节点类型数据流向核心职责主库读写(Write)处理事务性写操作(INSERT/UPDATE/DELETE)/部分读从库只读(Read)承担查询请求(SELECT),支持水平
- 【nnUnetv2】Code复现
是Winky啊
#项目nnUnet人工智能深度学习
作者提出一种nnUNet(no-new-Net)框架,基于原始的UNet(很小的修改),不去采用哪些新的结构,如相残差连接、dense连接、注意力机制等花里胡哨的东西。相反的,把重心放在:预处理(resampling和normalization)、训练(loss,optimizer设置、数据增广)、推理(patch-based策略、test-time-augmentations集成和模型集成等)、
- 3分钟带你了解Vue3的nextTick()
嫣嫣细语
vue.js前端javascriptvue.jsjavascript前端
前言Vue实现响应式并不是数据发生变化之后DOM立即变化,而是按一定的策略进行DOM的更新。简单来说,Vue在修改数据后,视图不会立刻更新,而是等同一事件循环中的所有数据变化完成之后,再统一进行视图更新,nextTick()方法就会在这样的DOM更新循环结束后调用指定的函数。概念在Vue3中nextTick()方法的行为和Vue2中基本相似,但它进行了一些优化,以提高性能和稳定性。nextTick
- 软件工程:数据字典
愚戏师
软件工程软件工程数据库
一、数据字典的核心作用定位:数据字典是数据流图(DFD)的补充说明文档,与DFD共同构成系统的逻辑模型。核心价值:消除二义性:明确数据流、存储、元素的定义,避免理解偏差。设计依据:为数据库设计、代码开发提供数据规范。团队协作:作为开发团队的共享词汇表,确保术语一致性。二、数据字典的四大组成要素1.数据流(DataFlow)定义:数据在系统中的流动路径。描述内容:来源与去向:起点(外部实体/处理)、
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- 弱网测试究竟要怎么做,才能防止漏测?
学掌门
IT软件测试程序员软件测试软件测试工程师
1、为什么要进行弱网测试?在游戏测试–黑盒测试中,分为功能测试与专项测试,在上几篇文章中说的都是功能测试,而专项测试主要包括弱网和性能测试。(其实弱网也是性能的一种。)功能测试主要是保证功能的完整性,能让玩家能够流程的体验整个游戏功能,而弱网测试就是其中需要关注的异常点。首先我们知道现在的网络场景一般是无网络2g3g4g和wifi,以及即将要到来的5g。弱网当然就包括无网、2g,3g不知道算不算,
- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- 大模型在冠心病风险预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、大模型预测冠心病风险原理与方法2.1数据收集与预处理2.1.1数据来源2.1.2数据清洗与整理2.2特征工程2.2.1特征提取2.2.2特征选择与优化2.3模型选择与训练2.3.1常用模型介绍2.3.2模型训练过程三、术前风险预测与手术方案制定3.1术前风险预测指标与模型应用3.2基于风险预测的手术方案制定3.3案例分析
- 车载以太网测试-14【交换机以及MAC地址表】
车载测试工程师
车载以太网测试tcp/ip网络网络协议经验分享车载系统
目录1摘要2车载交换机概述2.1OSI模型中的位置2.2车载交换机在数据链路层的功能3车载交换机的工作原理3.1车载交换机的关键工作步骤3.2车载交换机的关键技术3.3车载交换机的工作示例3.4MAC地址表3.4.1MAC地址表的工作原理3.4.2MAC地址表示例3.4.3MAC地址表的超时机制4总结1摘要车载交换机工作在OSI模型的数据链路层(DataLinkLayer),具体来说是数据链路层的
- Kafka深度解析
GarfieldEr007
Kafka/MQKafka深度解析MQ
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接)。本文转发自Jason’sBlog,原文链接http://www.jasongj.com/2015/01/02/Kafka深度解析背景介绍Kafka简介Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能高吞吐率。即使在非常廉价
- 在网页跑3D多人互动之渲染效能瓶颈
微网兔子
後端技術前端网络服务器c++unity架构3d
累积到目前测试回馈给我们的心得,主要问题还是在前端显示的部分。所以就来聊聊在网页跑3D多人互动之渲染效能瓶颈!!!数万个3D角色与场景物件需即时渲染,导致GPU/CPU过载,低端设备卡顿。已经使用的解决方案:LOD(LevelofDetail)技术:根据距离动态调整模型细节,远距离使用低多边形模型。InstancedRendering:批次渲染相同模型(如重复的树木、建筑物)。Culling(剔除
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr