zoj 3725 Painting Storages


ZOJ Problem Set - 3725
Painting Storages

Time Limit: 2 Seconds      Memory Limit: 65536 KB

There is a straight highway with N storages alongside it labeled by1,2,3,...,N. Bob asks you to paint all storages with two colors: red and blue. Each storage will be painted with exactly one color.

Bob has a requirement: there are at least M continuous storages (e.g. "2,3,4" are 3 continuous storages) to be painted with red. How many ways can you paint all storages under Bob's requirement?

Input

There are multiple test cases.

Each test case consists a single line with two integers: N and M (0

Process to the end of input.

Output

One line for each case. Output the number of ways module 1000000007.

Sample Input

4 3 

Sample Output

3

这道动态规划的题知道怎么做了会很简单主要分两种情况

1.前dp[i-1]个仓库成立,dp[i]就可以任意选择,dp[i]=d[i-1]*2;

2.前的dp[i-1]个仓库不成立,加上第i个刚好成立,则[i-m+1,i]必须染成红色,另外第i-m个就必须为蓝色,

与[i-m+1,i]不同所以就可以得出状态方程dp[i]=dp[i-1]*2+(i-m-1的全排列)-dp[i-m-1]

*************LHHHHHHH

               i-m             I

前i-m-1个必须不满足条件所以全排列减去dp[i-m-1]就得到了不成立的情况

#include 
#include 
#include 

using namespace std;

int N = 10005;
 int mod = 100000007;

int dp[N],pow[N]={1};

int main()
{
    int n,m;
    for(int i=1;i


 

你可能感兴趣的:(acm,zoj)