numpy中数组转置的求解以及向量内积计算

有点抱歉的是我的数学功底确实是不好,经过了高中的紧张到了大学之后松散了下来。原本高中就有点拖后腿的数学到了大学之后更是一落千丈。线性代数直接没有学明白,同样没有学明白的还有概率及统计以及复变函数。时至今日,我依然觉得这是人生中让人羞愧的一件事儿。不过,好在我还有机会,为了不敷衍而去学习一下。
矩阵的转置有什么作用,我真是不知道了,今天总结完矩阵转置的操作之后先去网络上补充一下相关的知识。
今天的代码操作如下:
In [15]: arr1 = np.arange(20)


In [16]: arr1
Out[16]:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19])


In [17]: arr2 = arr1.reshape((4,5))


In [18]: arr2
Out[18]:
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])


In [19]: arr3 = arr2.T


In [20]: arr3
Out[20]:
array([[ 0,  5, 10, 15],
       [ 1,  6, 11, 16],
       [ 2,  7, 12, 17],
       [ 3,  8, 13, 18],
       [ 4,  9, 14, 19]])


In [21]: np.dot(arr3,arr2)
Out[21]:
array([[350, 380, 410, 440, 470],
       [380, 414, 448, 482, 516],
       [410, 448, 486, 524, 562],
       [440, 482, 524, 566, 608],
       [470, 516, 562, 608, 654]])
Reshape的方法是用来改变数组的维度,而T的属性则是实现矩阵的转置。从计算的结果看,矩阵的转置实际上是实现了矩阵的对轴转换。而矩阵转置常用的地方适用于计算矩阵的内积。而关于这个算数运算的意义,我也已经不明确了,这也算是今天补课的内容吧!
关于前面的两个补课,看了一堆资料确实是不好理解。但是总是记忆公式终归不是我想要的结果,以后还需要不断地尝试理解。不过,关于内积倒是查到了一个几何解释,而且不知道其对不对。解释为:高维空间的向量到低维子空间的投影,但是思索了好久依然是没有弄明白。看来,线性代数还是得闷头好好理解一下咯。

你可能感兴趣的:(Python)