- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- OpenAI o1 的价值意义及“强化学习的Scaling Law” & Kimi创始人杨植麟最新分享:关于OpenAI o1新范式的深度思考
光剑书架上的书
ChatGPT大数据AI人工智能计算人工智能算法机器学习
OpenAIo1的价值意义及“强化学习的ScalingLaw”蹭下热度谈谈OpenAIo1的价值意义及RL的Scalinglaw。一、OpenAIo1是大模型的巨大进步我觉得OpenAIo1是自GPT4发布以来,基座大模型最大的进展,逻辑推理能力提升的效果和方法比预想的要好,GPT4o和o1是发展大模型不同的方向,但是o1这个方向更根本,重要性也比GPT4o这种方向要重要得多,原因下面会分析。为什
- 探索未来,大规模分布式深度强化学习——深入解析IMPALA架构
汤萌妮Margaret
探索未来,大规模分布式深度强化学习——深入解析IMPALA架构scalable_agent项目地址:https://gitcode.com/gh_mirrors/sc/scalable_agent在当今的人工智能研究前沿,深度强化学习(DRL)因其在复杂任务中的卓越表现而备受瞩目。本文要介绍的是一个开源于GitHub的重量级项目:“ScalableDistributedDeep-RLwithImp
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 反思的魔力:用语言的力量强化AI智能体
步子哥
人工智能机器学习
在浩瀚的代码海洋中,AI智能体就像初出茅庐的航海家,渴望探索未知的宝藏。然而,面对复杂的编程任务,他们常常迷失方向。今天,就让我们跟随“反思”的灯塔,见证AI智能体如何通过语言的力量,点亮智慧的明灯,成为代码世界的征服者!智能体的困境近年来,大型语言模型(LLM)在与外部环境(如游戏、编译器、API)交互的领域中大放异彩,化身为目标驱动的智能体。然而,传统的强化学习方法如同一位严苛的训练师,需要大
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍
微学AI
大模型的实践应用语言模型人工智能自然语言处理RLHF
大家好,我是微学AI,今天给大家介绍一下大模型的实践应用29-大语言模型的RLHF(人类反馈强化学习)的具体应用与原理介绍。在当今人工智能发展的浪潮中,大语言模型(LargeLanguageModels,LLMs)凭借其强大的语言理解和生成能力,成为了研究与应用的热点。而在这股浪潮中,一种名为“基于人类反馈的强化学习”的方法脱颖而出,为大语言模型的优化和应用开辟了新的路径。本文首部分将深入浅出地介
- 坚定理想信念,锤炼党性修养
知涵知
理想信念是中国共产党人的政治灵魂,是共产党人精神上的“钙”,没有理想信念,理想信念不坚定,精神上就会“缺钙”,就会得“软骨病”。党员干部只有坚定理想信念,强化责任担当,锤炼道德操守,提升党性修养,才能切实做到为党分忧、为国尽责、为民奉献。坚定理想信念,就要强化学习精神、自律精神、担当精神。思想理论上的坚定清醒是政治上坚定的前提,党员干部要始终把理论学习作为政治责任、事业需要和精神追求,积极参加组织
- python 物理引擎_在 Gym 上构建会动的人工智障1(python)
weixin_39542608
python物理引擎
背景说明作者最近使用processing的一个重要目标就是为学生的编程学习设计具体的应用场景,最近突然发现有一个包已经提供了部分功能,所以探索一下。这个包就是我们今天的主人公:Gym。Gym是用于开发和比较强化学习算法的python包,但是我们也完全可以使用它来作为我们自己程序的应用背景,并提供可视化。简单的说,就是我们使用自己写的小程序,而不是强化学习算法,来尝试完成其中的任务,并把完成任务的过
- 强化学习(二)----- 马尔可夫决策过程MDP
Duckie-duckie
机器学习数据数据分析数据挖掘机器学习算法
1.马尔可夫模型的几类子模型大家应该还记得马尔科夫链(MarkovChain),了解机器学习的也都知道隐马尔可夫模型(HiddenMarkovModel,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。马尔可夫决策过程(MarkovDecisionProcess,MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作
- Python强化学习,基于gym的马尔可夫决策过程MDP,动态规划求解,体现序贯决策
baozouxiaoxian
pythongymqlearningpython强化学习mdp动态规划求解马尔科夫决策过程
决策的过程分为单阶段和多阶段的。单阶段决策也就是单次决策,这个很简单。而序贯决策指按时间序列的发生,按顺序连续不断地作出决策,即多阶段决策,决策是分前后顺序的。序贯决策是前一阶段决策方案的选择,会影响到后一阶段决策方案的选择,后一阶段决策方案的选择是取决于前一阶段决策方案的结果。强化学习过程中最典型的例子就是非线性二级摆系统,有4个关键值,小车受力,受力方向,摆速度,摆角,每个状态下都需要决策车的
- 强化学习分类
0penuel0
Model-free:Qlearning,Sarsa,PolicyGradientsModel-based:能通过想象来预判断接下来将要发生的所有情况.然后选择这些想象情况中最好的那种基于概率:PolicyGradients基于价值:Qlearning,Sarsa两者融合:Actor-Critic回合更新:Monte-carlolearning,基础版的policygradients单步更新:Ql
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 深度强化学习之DQN-深度学习与强化学习的成功结合
CristianoC
目录概念深度学习与强化学习结合的问题DQN解决结合出现问题的办法DQN算法流程总结一、概念原因:在普通的Q-Learning中,当状态和动作空间是离散且维数不高的时候可以使用Q-Table来存储每个状态动作对应的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。一是因为当问题复杂后状态太多,所需内存太大;二是在这么大的表格中查询对应的状态也是一件很耗时的事情。image通常的做法是把
- 一对一包教会脑电教学服务
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★最近有不少人留言“脑电该怎么学习?想强化学习脑电某个内容版块可以吗?...”,也有小伙伴联系我们,咨询脑电相关内容能
- 基于时序差分的无模型强化学习:Q-learning 算法详解
晓shuo
算法强化学习
目录一、无模型强化学习中的时序差分方法与Q-learning1.1时序差分法1.2Q-learning算法状态-动作值函数(Q函数)Q-learning的更新公式Q-learning算法流程Q-learning的特点1.3总结一、无模型强化学习中的时序差分方法与Q-learning 动态规划算法依赖于已知的马尔可夫决策过程(MDP),在环境的状态转移概率和奖励函数完全明确的情况下,智能体无需与环
- (18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
码农三叔
强化学习从入门到实践人工智能深度学习股票交易模型DRLDoubleDQNDuelingDQN
在本章的这个项目中,实现了一个用于股票交易的DRL模型,旨在展示DRL在金融领域的潜力,提供其在股票交易中应用的实际例子。希望通过本章内容的学习,能够为那些对金融与机器学习交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。传统的交易策略通常依赖于经验、基本面分析或技术分析。然而,这些方法往往无法在快速
- 深度学习算法——Transformer
fw菜菜
数学建模深度学习transformer人工智能数学建模pythonpytorch
参考教材:动手学pytorch一、模型介绍Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐former是由编码器和解码器
- sumo carla 自动驾驶联合仿真 安装 配置 教程 开发 驾驶模拟 强化学习
jZhUeZPQZw
自动驾驶人工智能机器学习
sumocarla自动驾驶联合仿真安装配置教程开发驾驶模拟强化学习轨迹预测轨迹规划标题:基于SUMO和CARLA的自动驾驶联合仿真系统安装与配置:教程与开发探索摘要:随着自动驾驶技术的迅猛发展,仿真环境在自动驾驶系统的评估、训练和验证中扮演着重要的角色。本文介绍了基于SUMO(SimulationofUrbanMObility)和CARLA(CarLearningtoAct)的自动驾驶联合仿真系统
- Python知识点:如何使用Python实现强化学习机器人
杰哥在此
Python系列python机器人开发语言编程面试
实现一个强化学习机器人涉及多个步骤,包括定义环境、状态和动作,选择适当的强化学习算法,并训练模型。下面是一个简单的例子,使用Python和经典的Q-learning算法来实现一个强化学习机器人,目标是通过OpenAIGym提供的FrozenLake环境训练机器人学会如何在冰面上移动以找到目标。1.安装必要的库首先,需要安装OpenAIGym和Numpy。你可以使用以下命令安装它们:pipinsta
- 机器学习在医学中的应用
听忆.
机器学习人工智能
边走、边悟迟早会好机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。1.引言背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(如神经网络、支持向量机、随
- 人工智能&机器学习&深度学习
AA杂货铺111
机器学习:一切通过优化方法挖掘数据中规律的学科。深度学习:一切运用了神经网络作为参数结构进行优化的机器学习算法。强化学习:不仅能利用现有数据,还可以通过对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型的机器学习算法。学习是为了更好地对环境进行探索,而探索是为了获取数据进行更好的学习。深度强化学习:一切运用了神经网络作为参数结构进行优化的强化学习算法。人工智能定义与分类人工智能(Art
- 学习日志6
Simon#0209
学习
关于量子强化学习:论文Variational_Quantum_Circuits_for_Deep_Reinforcement_Learning:变分量子电路在深度强化学习中的应用论文主要内容:将经典深度强化学习算法(如经验重放和目标网络)重塑为变分量子电路的表示摘要当前最先进的机器学习方法基于经典冯·诺伊曼计算架构,并在许多工业和学术领域得到广泛应用。随着量子计算的发展,研究人员和技术巨头们试图为
- 【科技前沿】用深度强化学习优化电网,让电力调度更聪明!
风清扬雨
人工智能人工智能python智能电网深度强化学习
Hey小伙伴们,今天我要跟大家分享一个超级酷炫的技术应用——深度强化学习在电网优化中的典型案例!如果你对机器学习感兴趣,或是正寻找如何用AI技术解决实际问题的方法,这篇分享绝对不容错过!✨开场白大家好,我是你们的技术小助手!今天我们要聊的是如何利用深度强化学习(DRL)来优化电网的调度,让电力系统变得更智能、更高效。引入话题想象一下,如果你能够通过一种先进的技术手段,自动调整电网中的能源分配,不
- 大模型对齐方法笔记一:DPO及其变种IPO、KTO、CPO
chencjiajy
深度学习笔记机器学习人工智能
DPODPO(DirectPreferenceOptimization)出自2023年5月的斯坦福大学研究院的论文《DirectPreferenceOptimization:YourLanguageModelisSecretlyaRewardModel》,大概是2023-2024年最广为人知的RLHF的替代对齐方法了。DPO的主要思想是在强化学习的目标函数中建立决策函数与奖励函数之间的关系,以规避
- 多智能体环境设计(二)
AI-星辰
强化学习自定义环境python机器学习
多智能体环境设计:接口设计与实现目录引言PettingZoo框架概述核心接口方法详解3.1reset()方法3.2step(action)方法3.3observe(agent)方法3.4render()方法空间定义4.1观察空间4.2动作空间高级特性5.1并行环境5.2智能体通信5.3动态环境性能优化测试和调试实际应用示例最佳实践和常见陷阱1.引言多智能体环境是强化学习和人工智能研究中的一个重要领
- 【伤寒强化学习训练】打卡第四十五天 一期90天
A卐炏澬焚
3.5.2麻黄汤续讲与大、小青龙汤麻黄九禁【7.18】脉浮紧者,法当汗出而解。若身重心悸者,不可发汗,须自汗出乃愈。所以然者,尺中脉微,此里虚也。须里实,津液自和,便自汗出愈。【7.19】脉浮紧者,法当身疼痛,宜以汗解之。假令尺中迟者,不可发汗。所以然者,以荣气不足,血弱故也。【7.18】:脉浮紧的人照理说要发汗,如果身体重、心悸是不可以发汗;发汗,不一定用麻黄汤,大青龙汤也可以感冒很多人身体都是
- 从自动驾驶看无人驾驶叉车的技术落地和应用
电气_空空
自动驾驶自动驾驶机器人人工智能毕设
摘要|介绍无人驾驶叉车在自动驾驶技术中的应用,分析其关键技术,如环境感知、定位、路径规划等,并讨论机器学习算法和强化学习算法的应用以提高无人叉车的运行效率和准确性。无人叉车在封闭结构化环境、机器学习、有效数据集等方法的助力下,可有效推动叉车无人驾驶关键技术的发展。关键词:无人叉车;自动驾驶;机器学习;数据集随着人工智能技术的持续进步,无人叉车领域的供给与需求均呈现迅猛增长态势。它们不仅正在逐步替代
- 强化学习自定义环境基础知识
AI-星辰
强化学习自定义环境python机器学习
1.引言本文旨在全面介绍OpenAIGym自定义环境的创建过程,重点解析其接口、关键属性和函数。本指南适合初学者深入了解强化学习环境的构建原理和实践方法。2.OpenAIGym环境基础OpenAIGym提供了一个标准化的接口,用于创建和使用强化学习环境。了解这个接口的核心组件是创建自定义环境的基础。2.1Env类所有Gym环境都继承自gym.Env类。这个基类定义了环境应该具有的基本结构和方法。i
- 【《伤寒论》强化学习训练】打卡第32天,一期目标90天
最闪亮的那颗星_b02d
一、桂枝加葛根汤和葛根汤不能通用,因为葛根汤里有麻黄,会散阳气。太阳传到阳明时血分受邪,要用麻黄从血分把邪气发出来,所以用葛根汤治燥热感冒。桂枝汤治营卫不调的出汗或桂枝加附子汤治阳虚自汗,不能一开始就用黄芪,黄芪会让桂枝汤发挥不了通营卫的效果,汗止不了。人体表面的能量不足的时候,身体不能收摄自己身体的水分,桂枝加附子汤里有附子,可治阳虚自汗。玉屏风散治表虚的汗有效;桂枝加附子汤治虚汗有效,但是两个
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR