K-means算法和矢量量化

语音信号的数字处理课程作业——矢量量化。这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单。矢量是二维的,可以在平面上清楚的表示出来。

1. 算法描述

本次实验选择了K-means算法对数据进行矢量量化。算法主要包括以下几个步骤

  • 初始化:载入训练数据,确定初始码本中心(4个);
  • 最近邻分类:对训练数据计算距离(此处采用欧式距离),按照距离最小分类;
  • 码本更新:重新生成包腔对应的质心;
  • 重复分类和码本更新步骤,知道达到最大迭代次数或满足一定停止准则;
  • 利用上述步骤得到的码本对测试数据进行矢量量化,并求最小均方误差。

本实验准备使用MATLAB软件完成矢量量化任务,具体步骤实现如下

    1. 将training.dat和to_be_quantized.dat置于当前工作文件夹内,采用load命令载入training.dat 。
    2. 采用合适的规则选取初始的码本中心。如图 1所示。

image

图 1 码本中心选择

  1. 计算训练数据和每一码本中心之间的距离。
  2. 采用最近邻准则进行分类。
  3. 重新计算质心,计算公式如下所示。K-means算法和矢量量化
  4. 重复3~5,直到满足最大迭代次数或是两次迭代结果没有发生改变时,此时结果为训练结果。
  5. 利用训练结果对to_be_quantized.dat进行矢量量化。

2. 代码

    MATLAB代码如下

 1 %% training

 2 load('training.dat');

 3 scatter(training(:,1),training(:,2));

 4 %初始中心选取

 5 x_max = max(training(:,1));

 6 x_min = min(training(:,1));

 7 y_max = max(training(:,2));

 8 y_min = min(training(:,2));

 9 z1 = [(3*x_min+x_max)/4 (3*y_min+y_max)/4];

10 z2 = [(3*x_max+x_min)/4 (3*y_min+y_max)/4];

11 z3 = [(3*x_min+x_max)/4 (3*y_max+y_min)/4];

12 z4 = [(3*x_max+x_min)/4 (3*y_max+y_min)/4];

13 z = [z1;z2;z3;z4];

14 hold on;

15 scatter(z(:,1),z(:,2));

16 legend('训练数据','码本');grid on;

17 hold off;

18 for k = 1:20

19     %码本分类,欧式距离

20     distancetoz1 = (training - repmat(z1,size(training,1),1)).^2;

21     distancetoz1 = sum(distancetoz1,2);

22     distancetoz2 = (training - repmat(z2,size(training,1),1)).^2;

23     distancetoz2 = sum(distancetoz2,2);

24     distancetoz3 = (training - repmat(z3,size(training,1),1)).^2;

25     distancetoz3 = sum(distancetoz3,2);

26     distancetoz4 = (training - repmat(z4,size(training,1),1)).^2;

27     distancetoz4 = sum(distancetoz4,2);

28     distance = [distancetoz1 distancetoz2 distancetoz3 distancetoz4];

29     % 分类

30     if(classification == (distance == repmat(min(distance,[],2),1,4)))

31         error = mean(min(distance,[],2));

32         break;      %如果两次迭代之间没有变化,结束迭代

33     end;

34     classification = (distance == repmat(min(distance,[],2),1,4));

35     c1 = training(classification(:,1),:);

36     c2 = training(classification(:,2),:);

37     c3 = training(classification(:,3),:);

38     c4 = training(classification(:,4),:);

39     figure;scatter(c1(:,1),c1(:,2));hold on;scatter(c2(:,1),c2(:,2));

40     scatter(c3(:,1),c3(:,2));scatter(c4(:,1),c4(:,2));

41     legend('类型1','类型2','类型3','类型4');grid on;hold off;

42     % 码本更新

43     z1 = mean(c1);

44     z2 = mean(c2);

45     z3 = mean(c3);

46     z4 = mean(c4);

47     z = [z1;z2;z3;z4];

48 end

49 %% Test

50 load('to_be_quantized.dat')

51 distancetoz1 = (to_be_quantized - repmat(z1,size(to_be_quantized,1),1)).^2;

52 distancetoz1 = sum(distancetoz1,2);

53 distancetoz2 = (to_be_quantized - repmat(z2,size(to_be_quantized,1),1)).^2;

54 distancetoz2 = sum(distancetoz2,2);

55 distancetoz3 = (to_be_quantized - repmat(z3,size(to_be_quantized,1),1)).^2;

56 distancetoz3 = sum(distancetoz3,2);

57 distancetoz4 = (to_be_quantized - repmat(z4,size(to_be_quantized,1),1)).^2;

58 distancetoz4 = sum(distancetoz4,2);

59 distance = [distancetoz1 distancetoz2 distancetoz3 distancetoz4];

60 testerror = mean(min(distance,[],2));

61 

62 classification = (distance == repmat(min(distance,[],2),1,4));

63 c1 = to_be_quantized(classification(:,1),:);

64 c2 = to_be_quantized(classification(:,2),:);

65 c3 = to_be_quantized(classification(:,3),:);

66 c4 = to_be_quantized(classification(:,4),:);

67 figure;scatter(c1(:,1),c1(:,2));hold on;scatter(c2(:,1),c2(:,2));

68 scatter(c3(:,1),c3(:,2));scatter(c4(:,1),c4(:,2));

69 legend('类型1','类型2','类型3','类型4');grid on;hold off;

3. 实验结果

image

图 2 训练码本分布

imageimage

图 3第一次迭代结果                   图 4第四次迭代结果

imageimage

图 5第八次迭代结果                  图 6第九次迭代结果

 

        图 2展示了训练数据的分布,图 3~6是迭代过程中分类的变化情况,迭代完成后的码本为

  • Z1 = [1.62060631541935 -0.108624145483871]
  • Z2 = [7.96065094375000 -0.999061308437500]
  • Z3 = [1.72161941468750 6.82121444062500]
  • Z4 = [4.43652765757576 2.18874305151515]

4. 实验数据

   training.dat

K-means算法和矢量量化
  1   8.4416189e+000 -7.9885975e-001

  2   1.1480908e+000  7.8735044e+000

  3   7.7380144e+000 -1.2165061e+000

  4   8.9727144e-001  7.3962468e+000

  5   7.5343823e+000 -1.1424504e+000

  6  -6.9234039e-001 -1.7096610e+000

  7   7.6418740e+000 -1.3563792e+000

  8   3.1091418e+000  6.3850541e+000

  9   2.3482174e+000  4.7553506e-001

 10  -1.3840364e+000 -2.5480394e+000

 11   8.2008897e+000 -1.1448387e+000

 12  -1.1392497e+000 -2.0809884e+000

 13   3.7970116e+000  1.6906469e+000

 14   3.4484200e+000  1.3980911e+000

 15   2.5701485e+000  5.3755044e+000

 16   8.3899076e+000 -6.6675309e-001

 17   2.0146545e+000  5.6984592e+000

 18   1.8853328e+000  5.2762628e-001

 19   5.6781432e+000  3.2588691e+000

 20   1.0102480e+000  5.8167707e+000

 21   7.7302763e+000 -1.2030348e+000

 22   4.2118845e+000  1.6527181e+000

 23   4.3920049e-001  6.7168970e+000

 24   8.1934984e-001 -5.1917945e-001

 25   4.3708769e+000  2.1613573e+000

 26   1.8569681e+000  4.8380565e+000

 27   3.4732504e+000  1.7953635e+000

 28   7.5822756e+000 -1.1521814e+000

 29   2.6434078e+000  6.3295690e+000

 30   1.9968582e+000  7.3529314e+000

 31   4.0833513e+000  1.4936002e+000

 32   3.6767894e+000  6.7446912e+000

 33   1.3524515e+000  6.8177858e+000

 34   3.9711504e+000  1.5452503e+000

 35   1.5594711e+000  6.3885281e+000

 36   3.4692089e+000  1.7118124e+000

 37   5.2575491e+000  2.5601553e+000

 38   7.8827882e+000 -6.8867840e-001

 39   4.8176593e+000  2.1684005e+000

 40   2.7402486e+000  8.3320174e+000

 41   2.2549011e+000  3.9393641e-001

 42   8.0840542e+000 -7.3155184e-001

 43   8.8753667e-001  6.1607892e+000

 44   1.8067727e+000 -2.1099454e-001

 45   6.8650914e+000  4.4228389e+000

 46   6.4174056e+000  3.7590081e+000

 47   4.0933273e+000  1.3598676e+000

 48   2.2882999e+000  5.1876795e-001

 49   7.9225523e+000 -1.1725456e+000

 50   4.3561335e+000  1.8976163e+000

 51   8.3279098e+000 -1.0232899e+000

 52   6.2551331e+000  3.3449949e+000

 53   3.1276024e+000  7.8463356e-001

 54   6.5241605e+000  3.4561490e+000

 55   4.1588140e-001  6.4974858e+000

 56   2.7379263e+000  6.4746080e+000

 57   7.2185639e+000 -1.3525589e+000

 58   7.5424890e+000 -1.5317814e+000

 59   3.7468423e+000  1.6110753e+000

 60   8.8708536e+000 -5.6439331e-001

 61   7.6960713e+000 -1.1960633e+000

 62   7.5979552e+000 -1.1469059e+000

 63   2.8220978e+000  1.0360184e+000

 64   3.8165165e+000  1.6082223e+000

 65   6.6799248e-002 -1.2910367e+000

 66   2.3054028e+000  2.8450986e-001

 67   4.2788715e+000  5.1995858e+000

 68   3.0006534e+000  9.1250414e-001

 69   7.6051326e+000 -1.1005476e+000

 70   2.5331653e+000  9.7428007e-001

 71   1.0743104e+000  6.0859296e+000

 72   6.7237149e-001  8.6117274e+000

 73   2.4333003e+000  7.1421389e-001

 74   1.7723473e+000  7.1841833e+000

 75   3.5762796e+000  1.5348648e+000

 76   2.7863558e+000  7.3565043e-001

 77   8.0284284e+000 -7.9636983e-001

 78   8.4672682e+000 -8.2062254e-001

 79   2.3519727e+000  8.1632796e-001

 80   7.4240720e+000  4.1800229e+000

 81   1.9724319e+000  4.4328699e-001

 82   7.7622621e+000 -1.3506605e+000

 83   2.3793018e+000 -4.3107386e-001

 84   3.2455220e+000  1.2697488e+000

 85   1.3644859e+000  5.9712644e+000

 86   5.4815655e+000  2.6608754e+000

 87  -1.2002073e+000 -2.1765731e+000

 88  -3.5558595e-001  6.4387512e+000

 89   3.9418185e+000  1.9858047e+000

 90   1.0533626e+000 -7.9068285e-001

 91   1.9560213e+000  6.2001316e+000

 92   7.5555203e+000 -1.2087337e+000

 93   1.7851705e+000  7.0073148e+000

 94   2.2736274e+000  7.9336349e-001

 95   7.6615799e+000 -1.0445564e+000

 96   2.7181608e+000  4.7615418e-001

 97   1.8291149e+000 -6.7261971e-001

 98   7.8640867e+000 -1.4296092e+000

 99   2.6362814e+000  5.8303048e-001

100   3.7771102e+000  1.2928196e+000

101   7.5360359e+000 -9.7942712e-001

102   4.0257498e+000  1.2217666e+000

103   8.4500853e+000 -7.6599648e-001

104   3.0488646e+000  6.2159289e+000

105   2.0954150e+000  2.5848825e-001

106   1.6592148e+000  7.5650162e+000

107   3.5535363e+000  1.3326217e+000

108   4.3388636e+000  2.1235893e+000

109   3.1233524e+000  1.3971470e+000

110   7.6317385e+000 -1.0744610e+000

111   8.5028402e-001 -3.2822876e-001

112   8.6903131e+000 -2.6843242e-001

113   4.4418011e+000  2.5676053e+000

114   2.5119872e+000 -1.0521242e-001

115   1.9613752e+000  7.0072931e+000

116   3.2607143e+000  1.5432286e+000

117   3.2830401e+000  1.0228031e+000

118   8.0201528e+000 -7.0827461e-001

119   3.1597313e+000  7.6750043e+000

120   9.0059933e+000 -9.6130246e-001

121   1.1037820e+000 -1.2980812e-001

122   1.5334911e+000  7.4282719e+000

123   6.0948533e-001  6.3861341e+000

124   4.0065706e-001 -1.1015776e+000

125   2.3451558e+000  8.6384057e+000

126   1.4490876e+000  8.6646066e+000

127   8.0421821e+000 -8.1100509e-001

128   8.0175747e+000 -5.6119093e-001
View Code

    to_be_quantized

K-means算法和矢量量化
 1   3.7682247e+000  8.3609865e-001

 2   2.6963398e+000  6.5766226e-001

 3   3.3438207e+000  1.2495321e+000

 4   1.3646195e+000 -6.3947640e-001

 5   7.8227583e+000 -8.8616996e-001

 6   1.3532508e+000  7.6607304e+000

 7   2.2741739e+000  6.9387226e+000

 8   3.5361382e+000  5.9729821e+000

 9   8.0409138e+000 -1.1234886e+000

10   7.9630460e+000 -1.3032200e+000

11   2.3478158e+000  6.9759690e+000

12   3.2632942e+000  1.5675470e+000

13   1.5241488e+000  7.1053147e+000

14   5.7320838e+000  3.4042655e+000

15   2.3339411e+000  6.9428434e+000

16   6.5330392e+000  3.4415860e+000

17   3.1068803e+000  8.0080363e+000

18   7.4078126e+000 -1.3416027e+000

19   1.9925474e+000 -2.7782790e-001

20   5.0187915e+000  2.7058427e+000

21   2.6535497e-001 -1.2622069e+000

22   1.4960584e+000  6.3355004e+000

23   3.1933474e-001  7.1467466e+000

24   8.2821020e+000 -9.5178778e-001

25   2.5653586e+000  6.9836115e+000

26   3.6937139e+000  1.1535671e+000

27   8.5390043e+000 -5.0678923e-001

28   7.5436898e-001 -6.7669379e-001

29   2.1638213e+000  7.6142401e+000

30   4.8522826e+000  2.7079076e+000

31   5.4890641e+000  3.3875394e+000

32   4.2525899e+000  1.8861744e+000

33   8.4088615e+000 -1.1920963e+000

34   5.5396960e+000  2.9680110e+000

35   3.3334381e+000  1.4384861e+000

36   3.5212919e+000  1.0327602e+000

37   4.6303492e+000  2.1627805e+000

38   3.9385929e+000  1.0010804e+000

39   8.4553633e+000 -7.2297277e-001

40   1.8111095e+000  7.6132396e+000

41   1.1240984e+000 -2.7029879e-001

42  -3.3840083e-002 -1.5590834e+000

43   7.1674870e+000 -1.5449905e+000

44   8.5103026e+000 -9.8820393e-001

45   7.7529857e+000 -1.4787432e+000

46   1.8704913e+000  6.9370116e+000

47   6.0271939e+000  3.2118915e+000

48   2.8287461e+000  7.3399383e+000

49   4.1568876e+000  1.5631238e+000

50   8.2187067e-001 -5.8546437e-001

51   3.1084965e+000  5.3512449e+000

52   4.1581386e+000  2.1763345e+000

53   3.2267474e+000  1.4105815e+000

54   8.1564752e-001  7.2540175e+000

55   8.0241402e+000 -8.2411742e-001

56   6.2773554e+000  3.1729045e+000

57   8.5460058e+000 -1.0330056e+000

58   8.6215210e+000 -7.4057378e-001

59   7.4872291e+000 -1.0113921e+000

60   3.3155133e+000  9.7636038e-001

61   2.1051593e+000  3.4894654e-001

62   3.6776134e+000  1.5387928e+000

63   2.9009105e+000  5.6931589e+000

64   8.0567164e+000 -1.0000803e+000
View Code

 

你可能感兴趣的:(算法)