- 【Python系列】高效Parquet数据处理策略:合并与分析实践
小团团0
python开发语言
在大数据时代,数据的存储、处理和分析变得尤为重要。Parquet作为一种高效的列存储格式,被广泛应用于大数据处理框架中,如ApacheSpark、ApacheHive等。Parquet是一个开源的列存储格式,它被设计用于支持复杂的嵌套数据结构,同时提供高效的压缩和编码方案,以优化存储空间和查询性能。以下将详细介绍如何使用Python对Parquet文件进行数据处理与合并,并提供相应的源码示例。一、
- YOLOv8 改进:添加 AKConv(任意采样形状和任意数目参数的卷积)
鱼弦
人工智能时代YOLO
YOLOv8改进:添加AKConv(任意采样形状和任意数目参数的卷积)引言在目标检测领域中,YOLO(YouOnlyLookOnce)系列因其速度和效率而受到广泛关注。为了进一步优化模型性能,可以引入创新的卷积操作,例如AKConv,即“任意采样形状和任意数目参数的卷积”。这种卷积能够灵活地调整采样策略,以更好地适应输入特征。技术背景传统卷积运算在采样位置和参数数量上具有固定性,这限制了其对复杂几
- Leetcode-100 贪心算法
LuckyAnJo
leetcodeleetcode贪心算法算法
贪心算法简介贪心算法(GreedyAlgorithm)是一种常见的优化算法,用于解决最优化问题。该算法的核心思想是每次选择当前情况下的最优解,并期望通过这些局部最优解得到全局最优解。贪心算法通常用于那些可以分解为若干个子问题,且每个子问题的最优解可以合成全局最优解的问题。贪心算法之所以有用,是因为它可以快速地做出决策,并能在某些问题上实现较高的效率,避免了回溯与暴力解法的复杂度。贪心算法思想贪心算
- ROS多机通信(四)——Ubuntu 网卡 Mesh 模式配置指南
爱尔兰的楠小楠
机器人无人机开发ubuntulinux机器人去中心化分布式
引言使用Ad-hoc加路由协议和直接Mesh模式配置网卡实现的网络结构是一样的,主要是看应用选择,Ad-Hoc模式+B.A.T.M.A.N./OLSR优点:灵活性高,适合移动性强或需要优化的复杂网络。缺点:配置复杂,需手动管理路由协议。Mesh模式(802.11s)优点:配置简单,内置路由功能,易于部署。缺点:路由协议标准化,灵活性较低。在实现机器人之间的通信的时候,和为了适应大部分的场景我还是建
- 字节跳动算法高频题:动态规划最优模板
知识产权13937636601
计算机算法动态规划
本文系统梳理字节跳动近三年算法面试中的动态规划(DP)高频题型,提炼出适用于80%场景的通用解题模板。通过背包问题、字符串处理、状态压缩等六大核心模块解析,结合跳槽、股票交易、编辑距离等15道真题案例,揭示动态规划的状态转移方程构建规律与维度优化技巧,助您在面试中实现时间复杂度与空间复杂度的双重最优解。第一章动态规划基础框架1.1动态规划三大特征特征判定标准真题案例重叠子问题递归树中存在重复计算节
- MySQL中基于机器学习的自适应缓存热点识别优化策略——开启数据库性能新纪元
墨夶
数据库学习资料1数据库mysql机器学习
在数据驱动的世界里,数据库的性能直接影响到整个应用系统的响应速度和用户体验。随着业务量的增长和技术的发展,传统的缓存机制逐渐暴露出局限性。如何更智能地识别并利用热点数据进行缓存优化,成为提升数据库性能的关键所在。今天,我们将深入探讨一种创新的方法——基于机器学习的自适应缓存热点识别优化策略,并分享其在MySQL中的具体实现方案。为什么选择机器学习?传统上,开发者们依赖于手动配置或预设规则来决定哪
- Java 24 正式发布:AI 开发与后量子安全引领企业级编程革命
程序猿小白菜
后端java生态圈java人工智能安全
摘要2025年3月18日,Oracle正式发布Java24(OracleJDK24),这是Java诞生30周年之际的重要版本更新。新版本聚焦AI开发支持、后量子安全加密、性能优化和开发效率提升,提供20余项新特性及数千项改进,为企业级应用开发注入全新动力。一、语言特性:代码简洁性与模式匹配增强Java24在语法层面进一步简化代码逻辑,提升开发效率:JEP488:原始类型模式匹配(第二次预览)支持在
- 股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?
云策量化
量化交易量化软件量化炒股量化炒股QMT量化交易入门教程PTrade股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》标题:股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?正文:在金融投资的世界里,量化投资以其科学、系统和客观的特点,成为了众多投资者追求的“圣杯”。而在量化投资领域,蒋菲以其独特的大数据量化投资模型而闻名。本文将深入探讨蒋菲如何利用大数据优化其量化投资模型,以及她的数据来源有哪些。一、量化投资模型的优化
- 什么是Spring Boot?它在Java后端开发中的作用是什么?
破碎的天堂鸟
学习教程javaspringboot数据库
什么是SpringBoot?SpringBoot是由Pivotal团队开发的一个基于Spring框架的快速开发框架,旨在简化Spring应用的初始搭建和开发流程。其核心理念是“约定优于配置”(ConventionoverConfiguration),通过默认配置和自动化机制,使开发者能够快速构建独立的、生产级别的应用程序。以下是其核心定义与特点:基于Spring的扩展与优化SpringBoot并非
- 【传输层协议】TCP协议详解(上)
望舒_233
Linux网络tcp/ip网络服务器
前言TCP(TransmissionControlProtocol,传输控制协议)是TCP/IP协议栈中的核心协议,作为互联网通信的基石,承担着确保数据可靠传输的重要职责。接下来我将分两篇文章,从四个部分带大家学习一些与TCP相关的基本概念和机制,首先我将带大家认识一下TCP报头字段的含义,然后了解TCP保证可靠性的一些机制,接下来是TCP进行效率优化的机制,最后是TCP与应用层相关的概念。本篇文
- UI/UX设计服务行业分析
LPiling
uiux
行业现状UI(用户界面)设计关注用户与产品交互的界面设计,包括软件、应用程序、网站或任何数字产品的视觉和操作元素的集合,旨在提供用户友好的界面,使用户能够轻松地使用产品并实现他们的目标。UX(用户体验)设计则更为宏观,关注用户与产品交互过程中的全部体验,包括使用前、使用中和使用后的感受,目标是优化产品的功能性、可用性、易用性,确保用户在使用产品的过程中有良好的体验。近年来,随着技术的不断进步和用户
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- 每日面试题-假设有一个 1G 大的 HashMap,此时用户请求过来刚好触发它的扩容,会怎样?让你改造下 HashMap 的实现该怎样优化?
晚夜微雨问海棠呀
java开发语言
一、原理解析:HashMap扩容机制的核心问题当HashMap的size>capacity*loadFactor时触发扩容(默认负载因子0.75)。扩容流程如下:创建新数组:容量翻倍(newCap=oldCap{privateNode[]oldTable;privateNode[]newTable;privatevolatileintmigrationIndex=0;//迁移进度指针publicv
- 第6章:Dockerfile最佳实践:多阶段构建与镜像优化
DogDog_Shuai
docker容器运维
第6章:Dockerfile最佳实践:多阶段构建与镜像优化作者:DogDog_Shuai阅读时间:约30分钟难度:中级目录1.引言2.Dockerfile基础3.多阶段构建4.镜像优化技术5.最佳实践指南6.总结1.引言Dockerfile是构建Docker镜
- Cursor44.11 无限续杯攻略:持续畅享 AI 编程利器
不会算法的小灰
人工智能编辑器vscodeAI编程经验分享
一、引言在当今数字化快速发展的时代,高效的编程工具对于开发者来说如同珍宝。Cursor作为一款基于VSCode二次开发的强大AI编程编辑器,凭借其内置的多种AI大模型,如GPT-4、GPT-4o、Claude-3.5以及近期热门的DeepSeek满血版R1,为开发者提供了前所未有的编程体验。它能够快速生成代码、精准修复错误、智能优化逻辑等,极大地提升了编程效率。然而,新用户注册Cursor虽可获得
- 程序员晋升架构师实战指南
甘苦人生
职业规划职场和发展
以下是为程序员量身定制的晋升架构师实战指南,结合行业案例与可落地路径,助你完成技术跃迁:一、晋升路径拆解(从Code到Architecture)程序员→高级工程师核心任务:独立完成模块开发(需求分析+方案设计+编码实现)技术重点:掌握1-2门核心语言(如Java/Go)、熟悉主流框架(SpringCloud/Dubbo)案例:主导用户中心模块开发,通过缓存优化将接口响应时间从800ms降至150m
- 【操作系统】双缓冲机制(含原理、优势、实现方式、应用场景)
司六米希
嵌入式
双缓冲机制一、双缓冲机制的原理二、双缓冲的典型应用场景三、双缓冲的优势四、双缓冲的实现方式1.硬件级双缓冲2.软件级双缓冲3.性能提升对比五、双缓冲的挑战与解决方案六、总结双缓冲机制是一种通过使用两个缓冲区(BufferA和BufferB)来优化数据传输或处理效率的技术,其核心原理是并行处理与交替切换。以下是详细解析:一、双缓冲机制的原理基本概念:双缓冲区:系统维护两个相同大小的内存区域。分工协作
- React性能优化的8种方式
Mr.BoBo.
前端#Reactreact.js性能优化前端
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言1、Reac.memo缓存组件2、使用useMemo缓存大量的计算3、避免使用内联对象4、避免使用匿名函数5、延迟加载不是立即需要的组件6、调整CSS而不是强制组件加载和卸载7、使用React.Fragment避免添加额外的DOM8、使用React.PureComponent,shouldComponentUpdate9、
- OpenStack 云平台的深度定制与性能优化
算法探索者
openstack
引言OpenStack作为一款领先的开源云平台,以其高度的灵活性和可扩展性,为企业构建云计算基础设施提供了强大的支持。然而,不同企业的业务场景和技术需求千差万别,原生的OpenStack部署往往无法完全满足企业特定的要求。因此,对OpenStack云平台进行深度定制,并在此基础上进行性能优化,成为了企业充分发挥OpenStack优势、提升云服务质量的关键。本文将深入探讨如何针对企业特定需求对Ope
- Appdata\Local Roaming LocalLow文件夹
ynchyong
系统运维localRoamingLocalLow
自Vista及Win7开始,微软更改了原有的应用程序存储目录结构,(XP是ApplicationData)C\用户\用户名\Appdata,并分为Roaming,Local,及LocalLow三个文件夹.更改原因如下:优化登录速度根据使用安全级别分别访问不同文件夹Windows使用Local及LocalLow文件夹存放非漫游的应用程序数据(类似注册表Local_machine)及一些空间占用大无法
- What's new in dubbo-go v3.3.0
我们dubbogo社区很高兴地宣布发布最新版本v3.3.0!这一版本带来了多个Bug修复、新特性以及代码优化,显著提升了dubbogo的稳定性与功能性。版本亮点在本次更新中,我们对多个核心组件进行了改进,以解决服务发现、注册中心相关的问题,并优化内存管理,减少内存泄漏。此外,我们增强了底层通信库的错误处理能力,并提升了系统的整体稳定性,为Go开发者提供更强大、更可靠的微服务开发体验。本次更新的主要
- Deepseek和豆包在技术创新方面有哪些相同点与不同点?
alankuo
人工智能
Deepseek和豆包在技术创新方面的相同点与不同点如下:相同点架构基础:都以Transformer架构为基础进行开发。Transformer架构能有效处理长序列数据,捕捉文本语义信息,为模型性能提供基础。混合专家模型(MoE)应用:都采用了MoE架构。该架构将模型拆分为多个“专家”,训练和推理时让不同“专家”负责不同任务或数据子集,提高模型表达能力和效率,降低训练成本。模型优化以提升性能:都通过
- 电力电子仿真:整流器仿真_(15).整流器的性能评估
kkchenkx
电力电子仿真嵌入式硬件电子电力仿真单片机matlab
整流器的性能评估1.引言在电力电子系统中,整流器是将交流电转换为直流电的关键设备。整流器的性能直接影响到系统的效率、稳定性和可靠性。因此,对整流器进行性能评估是设计和优化电力电子系统的重要步骤。本节将详细介绍整流器性能评估的原理和方法,包括直流输出电压、纹波、效率、谐波失真和动态响应等关键指标的评估方法。2.直流输出电压2.1直流输出电压的定义直流输出电压是指整流器在稳态工作条件下,输出端的直流电
- 燃爆!程序员如何借助 AI 大模型冲破编程效率枷锁?(以DeepSeek,ChatGPT为例)
羑悻的小杀马特.
AI学习chatgptdeepseekAI大模型开发语言
AI大模型已成为程序员提升效率的有力助手。本文聚焦DeepSeek和ChatGPT,探讨程序员如何借其冲破编程效率枷锁。在代码编写阶段,它们能快速生成基础框架、实现特定功能及复杂算法代码;调试时,精准分析错误并给出优化建议;文档生成方面,为函数、类及项目文档助力。程序员需掌握高效交互技巧,结合自身经验,合理利用AI大模型,全面提升编程效率,开启高效编程新境界。目录一·本篇背景:二、AI大模型简介2
- 云原生工程师必修课:如何揪出“假忙真闲”的应用元凶
YAMLMaster
面试题kubernetes运维开发devops
Tagamanent,Spain引言这是一个再经典不过的面试题了,希望大家能学到精髓。开始介绍在分布式系统和高并发场景中,高负载(HighLoad)与低使用率(LowUtilization)的共存矛盾是运维和开发者的常见挑战。这种问题往往隐蔽性强,传统监控指标难以直接定位根因。本文从系统层、应用层、架构层多维度拆解,提供一套完整的排查与优化方法论。核心概念厘清•负载(Load):系统当前待处理任务
- Pytorch深度学习教程_9_nn模块构建神经网络
tRNA做科研
深度学习保姆教程深度学习pytorch神经网络
欢迎来到《深度学习保姆教程》系列的第九篇!在前面的几篇中,我们已经介绍了Python、numpy及pytorch的基本使用,进行了梯度及神经网络的实践并学习了激活函数和激活函数,在上一个教程中我们学习了优化算法。今天,我们将开始使用pytorch构建我们自己的神经网络。欢迎订阅专栏进行系统学习:深度学习保姆教程_tRNA做科研的博客-CSDN博客目录1.理解nn模块:(1)使用nn.Sequent
- Java并发实战——CountDownLatch优化商品详情页数据加载
1加1等于
Java并发java开发语言多线程
本文将结合电商场景比如优化商品详情页数据加载,深入探讨CountDownLatch的工作原理及实际应用。本文目录1.简介2.商品详情页数据加载优化实战3.CountDownLatch的优势4.其他应用场景5.使用误区1.简介CountDownLatch是Java并发包java.util.concurrent中的一个同步工具类。允许一个或多个线程等待,直到其他一组线程完成一系列操作。CountDow
- 基于 PyTorch 的 MNIST 手写数字分类模型
欣然~
pytorch分类人工智能
一、概述本代码使用PyTorch框架构建了一个简单的神经网络模型,用于解决MNIST手写数字分类任务。代码主要包括数据的加载与预处理、神经网络模型的构建、损失函数和优化器的定义、模型的训练、评估以及最终模型的保存等步骤。二、依赖库torch:PyTorch深度学习框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
- 使用Titan Takeoff进行高效的自然语言处理模型推理
scaFHIO
自然语言处理人工智能python
在自然语言处理(NLP)领域,每一家企业都在寻求更高效的模型训练和推理解决方案。TitanML的平台通过训练、压缩和推理优化帮助企业构建和部署更佳、更小、更便宜、更快速的NLP模型。特别是其推理服务器TitanTakeoff,使得在本地硬件上轻松部署大语言模型(LLMs)成为可能。技术背景介绍TitanTakeoff是TitanML提供的一项服务,它允许用户在本地硬件上运行推理工作负载。支持大多数
- 2021-最新Web前端经典面试试题及答案-史上最全前端面试题(含答案)---React篇
圆白菜和大白菜
前端react大前端react
★★★React事件绑定原理★★★React中的setState缺点是什么呢★★★React组件通信如何实现★★★类组件和函数组件的区别★★★请你说说React的路由是什么?★★★★★React有哪些性能优化的手段?★★★★Reacthooks用过吗,为什么要用?★★★★虚拟DOM的优劣如何?实现原理?★★★★React和Vue的diff时间复杂度从O(n^3)优化到O(n),那么O(n^3)和O
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc