在上一篇文章简单的讲解了设计模式的七大原则和UML类图的使用,这篇文章开始学习23种设计模式。
一、设计模式类型
设计模式分为三种类型,共 23 种
1) 创建型模式:单例模式、抽象工厂模式、原型模式、建造者模式、工厂模式。
2) 结构型模式:适配器模式、桥接模式、装饰模式、组合模式、外观模式、享元模式、代理模式。
3) 行为型模式:模版方法模式、命令模式、访问者模式、迭代器模式、观察者模式、中介者模式、备忘录模式、解释器模式(Interpreter 模式)、状态模式、策略模式、职责链模式(责任链模式)。
注意:不同的书籍上对分类和名称略有差别。
二、单例设计模式
1.1 单例设计模式介绍
所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例, 并且该类只提供一个取得其对象实例的方法(静态方法)。
比如 Hibernate 的 SessionFactory,它充当数据存储源的代理,并负责创建 Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个 SessionFactory 就够,这是就会使用到单例模式。
1.2 单例设计模式八种方式
单例模式有八种方式:
1) 饿汉式(静态常量)
2) 饿汉式(静态代码块)
3) 懒汉式(线程不安全)
4) 懒汉式(线程安全,同步方法)
5) 懒汉式(线程安全,同步代码块)6) 双重检查
7) 静态内部类
8) 枚举
1.2.1 饿汉式(静态常量)
饿汉式(静态常量)应用实例
步骤如下:
1) 构造器私有化 (防止 new )
2) 类的内部创建对象
3) 向外暴露一个静态的公共方法。getInstance
4) 代码实现
package com.atguigu.singleton.type1;
public class SingletonTest01 {
public static void main(String[] args) {
//测试
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
//饿汉式(静态变量)
class Singleton {
//1. 构造器私有化, 外部能 new
private Singleton() {}
//2.本类内部创建对象实例
private final static Singleton instance = new Singleton();
//3. 提供一个公有的静态方法,返回实例对象
public static Singleton getInstance() {
return instance;
}
}
➢ 优缺点说明:
1) 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
2) 缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
3) 这种方式基于 classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模式中大多数都是调用 getInstance 方法, 但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 lazy loading 的效果
4) 结论:这种单例模式可用,可能造成内存浪费
1.2.2 懒汉式(线程不安全)
package com.atguigu.singleton.type3;
public class SingletonTest03 {
public static void main(String[] args) {
System.out.println("懒汉式 1 , 线程不安全~");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
class Singleton {
private static Singleton instance;
private Singleton() {}
// 提供一个静态的公有方法,当使用到该方法时,才去创建 instance
// 即懒汉式
public static Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
➢ 优缺点说明:
1) 起到了 Lazy Loading 的效果,但是只能在单线程下使用。
2) 如果在多线程下,一个线程进入了 if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式
3) 结论:在实际开发中,不要使用这种方式
1.2.3 双重检查
package com.atguigu.singleton.type6;
public class SingletonTest06 {
public static void main(String[] args) {
System.out.println("双重检查");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
// 懒汉式(线程安全,同步方法)
class Singleton {
private static volatile Singleton instance;
private Singleton() {}
//提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
//同时保证了效率, 推荐使用
public static synchronized Singleton getInstance() {
if(instance == null) {
synchronized (Singleton.class) {
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
➢ 优缺点说明:
1) Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次 if (singleton == null)检查,这样就可以保证线程安全了。
2) 这样,实例化代码只用执行一次,后面再次访问时,判断 if (singleton == null),直接 return 实例化对象,也避免的反复进行方法同步.
3) 线程安全;延迟加载;效率较高
4) 结论:在实际开发中,推荐使用这种单例设计模式
1.3 单例模式在JDK应用的源码分析
1) 我们 JDK 中,java.lang.Runtime 就是经典的单例模式(饿汉式)
2) 代码分析+Debug 源码+代码说明
1.4 单例模式注意事项和细节说明
1) 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
2) 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
3) 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)