- 利用 OpenCV 库进行实时目标物体检测
欣然~
opencv人工智能计算机视觉
一、代码概述此代码利用OpenCV库实现了基于特征匹配的实时物体检测系统。通过摄像头捕获实时视频帧,将其与预先加载的参考图像进行特征匹配,从而识别出视频帧中是否存在与参考图像匹配的物体。二、环境依赖OpenCV:用于图像处理、特征提取和匹配等操作。NumPy:用于数值计算,OpenCV依赖于NumPy进行数组操作。可以使用以下命令安装所需库:bashpipinstallopencv-pythonn
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- Manus(一种AI代理或自动化工具)与DeepSeek(一种强大的语言模型或AI能力)结合使用任务自动化和智能决策
zzlyx99
人工智能自动化语言模型
一、Manus与DeepSeek差异十分好奇DeepSeek和Manus究竟谁更厉害些,DeepSeek是知识型大脑,Manus则是全能型执行者。即DeepSeek专注于语言处理、知识整合与专业文本生成。其核心优势在于海量参数支持的深度学习和知识推理能力,例如撰写论文、润色法律合同、解答专业问题等。Manus则更强调从规划到交付的闭环能力。它通过工具链调用(如浏览器、代码编辑器)自主执行复杂任务,
- 深度学习处理时间序列(2)
yyc_audio
深度学习笔记深度学习人工智能
在数据中寻找周期性在多个时间尺度上的周期性,是时间序列数据非常重要且常见的属性。无论是天气、商场停车位使用率、网站流量、杂货店销售额,还是健身追踪器记录的步数,你都会看到每日周期性和年度周期性(人类生成的数据通常还有每周的周期性)。探索数据时,一定要注意寻找这些模式。(让人想到波,想到傅里叶变换)对于这个数据集,如果你想根据前几个月的数据来预测下个月的平均温度,那么问题很简单,因为数据具有可靠的年
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- 如何用Python绘制柱状图堆叠图?
上官美丽
技术分享python开发语言
在数据分析和可视化的过程中,柱状图是一种非常常用的图表类型。它能清晰地展示不同类别之间的比较。而堆叠柱状图则是在此基础上,能够展示各个部分在整体中的占比!今天,我们来聊聊如何使用Python绘制堆叠柱状图,帮助你更好地理解数据。我们将使用一个非常流行的库:Matplotlib。准备工作首先,你需要确保安装了Matplotlib库。如果还没有安装,可以通过以下命令来安装:pipinstallmatp
- 机器视觉|手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计
RockLiu@805
机器视觉YOLO
手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计在实时计算机视觉应用中,手部检测与关键点估计是实现手势识别的重要基础。本文将介绍一种基于深度学习的手势识别技术方案,通过结合YOLOv5物体检测网络和MediaPipe关键点检测框架,实现实时的手部定位与关键点提取。技术背景gesturerecognition作为计算机视觉领域的重要研究方向,在HCI(人机交互)、遥控行为分析、虚
- ❤【纯干货】Matplotlib总结,任何项目都用得到❤
.Boss.
支持向量机人工智能算法机器学习python
.................❤纯干货❤..........目录1、绘制基本图形2、定制化图形3、支持多个坐标轴4、3D绘图5、动态交互绘图6、绘制地图7、绘制统计图表最后Matplotlib在很多人眼里是无敌的存在,而且可以说是无敌的存在。走过数据科学的路,路上必然有Matplotlib的风景在你周围。如果同一个项目,你的用了matplotlib不仅有基本图形、定制化图形、多个坐标轴、3D绘
- 深入解析LTE-A到5G的系统消息架构与功能演进
罗博深
本文还有配套的精品资源,点击获取简介:系统消息是移动通信网络中,UE与网络间信息交换的核心,涵盖了网络状态、服务信息与系统配置。文章深入分析了4GLTE-A到5G网络中系统消息的组成、作用及其演进,包括MIB和SIBs的功能与内容,以及5G对系统消息的优化和新技术的引入,如动态调度、网络切片和针对物联网设备的特定参数配置。5G系统消息还通过机器学习和大数据分析实现智能化分发,增强了网络灵活性、智能
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- 【杨乐昆何凯明AI论文】没有归一化的Transformer模型
东临碣石82
人工智能transformer深度学习
摘要:归一化层在现代神经网络中无处不在,长期以来一直被视为不可或缺的组成部分。本研究表明,通过使用一种极其简单的技术,没有归一化的Transformer模型可以达到相同或更好的性能。我们引入了动态Tanh(DyT),这是一种逐元素操作,表示为DyT(x)=tanh(alphax),作为Transformer中归一化层的即插即用替代品。DyT的灵感来源于这样一个观察:Transformer中的层归一
- 基于深度学习的个性化新闻推荐系统设计与实现计算机毕设
sj52abcd
深度学习课程设计人工智能毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着互联网技术的发展和普及,人们越来越依赖互联网获取信息。然而,随着信息量的不断增加,用户在查找新闻时面临着信息过载的问题。为了解决这个问题,个性化新闻推荐系统被广泛应用。个性化新闻推荐系
- python 人工智能实战案例
2401_86114612
pygamepythonjava
大家好,今天我们要分享,python编程人工智能小例子python人工智能100例子,一起探索吧!1.背景介绍概述在这个世纪,人类已经处于数字化的时代,而这也让很多其他行业都进入了数字化领域python列表有哪些基本操作,python列表功能很重要吗。其中包括游戏行业。游戏行业的蓬勃发展促使机器学习的产生,通过计算机能够进行高效率地模拟人类的学习、决策过程,不断升级提升人类的能力。游戏领域中的AI
- Python 在人工智能领域的实际6大案例
Solomon_肖哥弹架构
人工智能机器学习python
Python作为一种功能强大且易于学习的编程语言,在人工智能(AI)领域得到了广泛的应用。从机器学习到深度学习,从自然语言处理到计算机视觉,Python提供了丰富的库和框架,使得开发者能够快速实现各种AI应用。本文将通过多个实际案例,展示Python在人工智能领域的强大功能和应用前景。二、案例一:手写数字识别(MNIST)1.背景介绍手写数字识别是机器学习领域的经典入门项目,MNIST数据集包含了
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- 基于AI算法实现的情感倾向分析的方法
程序员奇奇
计算机毕设人工智能算法
完整代码:https://download.csdn.net/download/pythonyanyan/87430621背景目前,情感倾向分析的方法主要分为两类:一种是基于情感词典的方法;一种是基于机器学习的方法,如基于大规模语料库的机器学习。前者需要用到标注好的情感词典,英文的词典有很多,中文主要有知网整理的情感词典Hownet和台湾大学整理发布的NTUSD两个情感词典,还有哈工大信息检索研究
- 机器学习算法实战——天气数据分析(主页有源码)
喵了个AI
机器学习实战机器学习算法数据分析
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言天气数据分析是气象学和数据科学交叉领域的一个重要研究方向。随着大数据技术的发展,气象数据的采集、存储和分析能力得到了显著提升。机器学习算法在天气数据分析中的应用,不仅能够提高天气预报的准确性,还能为气候研究、灾害预警等提供有力支持。本文将介绍机器学习在天气数据分析中的应用,探讨
- 《Python深度学习》第四讲:计算机视觉中的深度学习
earthzhang2021
2025讲书课专栏python深度学习计算机视觉1024程序员节numpy算法人工智能
计算机视觉是深度学习中最酷的应用之一,它让计算机能够像人类一样“看”和理解图像。想象一下,计算机可以自动识别照片中的物体、人脸,甚至可以读懂交通标志。这一切听起来是不是很神奇?其实,这一切都离不开深度学习中的卷积神经网络(CNN)。今天,我们就来深入了解一下CNN是如何工作的。5.1卷积神经网络简介先来看下卷积神经网络(CNN)是什么。CNN是一种专门用于处理图像数据的神经网络。它的灵感来源于人类
- 基于人工智能的智能视频内容分析系统
小彭律师
python
基于人工智能的智能视频内容分析系统系统功能1.视频数据预处理降噪与滤波:去除视频画面中的噪点和干扰画质增强:调整亮度、对比度和色彩平衡关键帧提取:减少数据量,提取关键信息2.目标识别检测基于深度学习模型(YOLO、FasterR-CNN等)识别多种目标类型(人、车辆、物品等)适应不同光照、角度和遮挡情况输出目标位置、类别和置信度3.行为分析研判基于时序模型(LSTM、3D-CNN等)分析目标动作规
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- NLP复习3,手撕多头attention
地大停车第二帅
NLP学习自然语言处理人工智能
importmathimporttorchimportcollectionsimportnumpyasnpimporttorch.nnasnnclassMultiHeadAttention(nn.Module):def__init__(self,heads,d_model,dropout=0.1):super().__init__()#输入的特征维度self.d_model=d_model#每个头
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 手撕multi-head self attention 代码
心若成风、
自然语言处理语言模型transformer
在深度学习和自然语言处理领域,多头自注意力(Multi-HeadSelf-Attention)机制是Transformer模型中的核心组件之一。它允许模型在处理序列数据时,能够同时关注序列中的不同位置,从而捕获到丰富的上下文信息。下面,我们将详细解析多头自注意力机制的实现代码。一、概述多头自注意力机制的核心思想是将输入序列进行多次线性变换,然后分别计算自注意力得分,最后将所有头的输出进行拼接,并通
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- Julia语言的学习路线
樟松
包罗万象golang开发语言后端
Julia语言学习路线指南引言在编程语言层出不穷的今天,Julia作为一门新兴的高级编程语言,以其出色的性能和易用性逐渐获得了越来越多的关注。特别是在科学计算、数据分析和机器学习等领域,Julia的表现十分出色,成为研究人员和开发者的热门选择。本文将为希望学习Julia语言的读者提供一条详细的学习路线,包括基础知识、工具、库、项目和实践经验等,帮助大家有效地掌握这门语言。一、了解Julia语言在开
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include