Redis Cluster原理详解

转载自http://moguhu.com/article/detail?articleId=108

Redis 3.0之后,节点之间通过去中心化的方式,提供了完整的 sharding、replication(复制机制仍使用原有机制,并且具备感知主备的能力)、failover 解决方案,称为 Redis Cluster。即:将 proxy/sentinel 的工作融合到了普通Redis节点里。后面将介绍 Redis Cluster 这种模式下,水平拆分、故障转移等需求的实现方式。

拓扑结构

一个 Redis Cluster 由多个Redis节点组成。不同的节点组服务的数据无交集,每个节点对应数据 sharding 的一个分片。节点组内部分为主备 2 类,对应前面叙述的 master 和 slave。两者数据准实时一致,通过异步化的主备复制机制保证。一个节点组有且仅有一个master,同时有0到多个slave。只有master对外提供写服务,读服务可由 master/slave 提供。如下所示:

上图中,key-value 全集被分成了 5 份,5个 slot(实际上Redis Cluster有 16384 [0-16383] 个slot,每个节点服务一段区间的slot,这里面仅仅举例)。A和B为master节点,对外提供写服务。分别负责 1/2/3 和 4/5 的slot。A/A1 和B/B1/B2 之间通过主备复制的方式同步数据。

上述的5个节点,两两通过 Redis Cluster Bus 交互,相互交换如下的信息:

1、数据分片(slot)和节点的对应关系;

2、集群中每个节点可用状态;

3、集群结构发生变更时,通过一定的协议对配置信息达成一致。数据分片的迁移、主备切换、单点 master 的发现和其发生主备关系变更等,都会导致集群结构变化。

4、publish/subscribe(发布订阅)功能,在Cluster版内部实现所需要交互的信息。

Redis Cluster Bus 通过单独的端口进行连接,由于Bus是节点间的内部通信机制,交互的是字节序列化信息。相对Client的字符序列化来说,效率较高。

Redis Cluster是一个去中心化的分布式实现方案,客户端和集群中任一节点连接,然后通过后面的交互流程,逐渐的得到全局的数据分片映射关系。

配置的一致性

对于去中心化的实现,集群的拓扑结构并不保存在单独的配置节点上,后者的引入同样会带来新的一致性问题。那么孤立的节点间,如何对集群的拓扑达成一致,是Redis Cluster配置机制要解决的问题。Redis Cluster通过引入2个自增的Epoch变量,来使得集群配置在各个节点间最终达成一致。

1、配置信息数据结构

Redis Cluster 中的每个节点都保存了集群的配置信息,并且存储在 clusterState 中,结构如下:

上图的各个变量语义如下:

clusterState 记录了从集群中某个节点视角,来看集群配置状态;

currentEpoch 表示整个集群中最大的版本号,集群信息每变更一次,改版本号都会自增。

nodes 是一个列表,包含了本节点所感知的,集群所有节点的信息(clusterNode),也包含自身的信息。

clusterNode 记录了每个节点的信息,其中包含了节点本身的版本 Epoch;自身的信息描述:节点对应的数据分片范围(slot)、为master时的slave列表、为slave时的master等。

每个节点包含一个全局唯一的 NodeId。

当集群的数据分片信息发生变更(数据在节点间迁移时),Redis Cluster 仍然保持对外服务。

当集群中某个master出现宕机时,Redis Cluster 会自动发现,并触发故障转移的操作。会将master的某个slave晋升为新的 master。

由此可见,每个节点都保存着Node视角的集群结构。它描述了数据的分片方式,节点主备关系,并通过Epoch 作为版本号实现集群结构信息的一致性,同时也控制着数据迁移和故障转移的过程。

2、信息交互

去中心化的架构不存在统一的配置中心。在Redis Cluster中,这个配置信息交互通过 Redis Cluster Bus 来完成(独立端口)。Redis Cluster Bus 上交互的信息结构如下:

clusterMsg 中的type指明了消息的类型,配置信息的一致性主要依靠 PING/PONG。每个节点向其他节点频繁的周期性的发送PING/PONG消息。对于消息体中的 Gossip 部分,包含了sender/receiver 所感知的其他节点信息,接受者根据这些Gossip 跟新对集群的认识。

对于大规模的集群,如果每次PING/PONG 都携带着所有节点的信息,则网络开销会很大。此时Redis Cluster 在每次PING/PONG,只包含了随机的一部分节点信息。由于交互比较频繁,短时间的几次交互之后,集群的状态也会达成一致。

3、一致性的达成

当Cluster 结构不发生变化时,各个节点通过gossip 协议在几轮交互之后,便可以得知Cluster的结构信息,达到一致性的状态。但是当集群结构发生变化时(故障转移/分片迁移等),优先得知变更的节点通过Epoch变量,将自己的最新信息扩散到Cluster,并最终达到一致。

clusterNode 的Epoch描述的单个节点的信息版本;

clusterState 的currentEpoch 描述的是集群信息的版本,它可以辅助Epoch 的自增生成。因为currentEpoch 是维护在每个节点上的,在集群结构发生变更时,Cluster 在一定的时间窗口控制更新规则,来保证每个节点的 currentEpoch 都是最新的。

更新规则如下:

1、当某个节点率先知道了变更时,将自身的 currentEpoch 自增,并使之成为集群中的最大值。再用自增后的 currentEpoch 作为新的 Epoch 版本;

2、当某个节点收到了比自己大的 currentEpoch 时,更新自己的 currentEpoch;

3、当收到的 Redis Cluster Bus 消息中的 某个节点的 Epoch > 自身的 时,将更新自身的内容;

4、当Redis Cluster Bus 消息中,包含了自己没有的节点时,将其加入到自身的配置中。

上述的规则保证了信息的更新都是单向的,最终朝着 Epoch 更大的信息收敛。同时 Epoch 也随着 currentEpoch 的增加而增加,最终将各节点信息趋于稳定。

sharding

不同节点分组服务于相互无交集的分片(sharding),Redis Cluster 不存在单独的 proxy 或配置服务器,所以需要将客户端路由到目标的分片。

1、数据分片(slot)

Redis Cluster 将所有的数据划分为16384 [0-16383] 个分片,每个分片负责其中一部分。每一条数据(key-value)根据key值通过数据分布算法(一致性哈希)映射到16384 个slot中的一个。数据分布算法为:

slotId = crc16(key) % 16384

客户端根据 slotId 决定将请求路由到哪个Redis 节点。Cluster 不支持跨节点的单命令,如:sinterstore,如果涉及的 2 个key对应的slot 在不同的 Node,则执行失败。通常Redis的key都是带有业务意义的,如:Product:Trade:20180890310921230001、Product:Detail:20180890310921230001。当在集群中存储时,上述同一商品的交易和详情可能会存储在不同的节点上,进而对于这2个key 不能以原子的方式操作。为此,Redis 引入了 HashTag的概念,使得数据分布算法可以根据key 的某一部分进行计算,让相关的2 条记录落到同一个数据分片。如:

商品交易记录key:Product:Trade:{20180890310921230001}
商品详情记录key:Product:Detail:{20180890310921230001}

Redis 会根据  {}  之间的字符串作为数据分布式算法的输入。

2、客户端的路由

Redis Cluster 的客户端相比单机Redis 需要具备路由语义的识别能力,且具备一定的路由缓存能力。当Client 访问的key 不在当前Redis 节点的 slots 中,Redis 会返回给Client 一个 moved命令。并告知其正确的路由信息,如下所示:

当Client 接收到moved 后,再次请求新的Redis时,此时Cluster 的结构又可能发生了变化(slot 迁移)。此时有可能再次返回moved 。Client 会根据 moved响应,更新其内部的路由缓存信息,以便后续的操作直接找到正确的节点,减少交互次数。

当Cluster 在 slot迁移过程中时,可以通过 ask命令控制客户端的路由,如下所示:

上图中,Source节点的slot 需要迁移到 Target节点上,此时如果客户端已经完成迁移的 key,节点将相应ask 告知客户端想目标节点重试。

ask命令和 moved命令的不同在于:

1、moved 会更新 Client数据路由,ask 只是重定向新节点,但是后续的相同 slot 仍会路由到旧节点;

2、slot 在迁移过程中,如果slot已经确定迁移,返回moved;如果正在迁移中,返回ask。

迁移的过程可能会持续一段时间,这段时间某个slot 的数据,同时可能存在于新旧 2 个节点。由于move 操作会使Client 的路由缓存变更,如果新旧节点对于迁移中的slot 所有key 都回应moved,客户端的路由缓存会频繁变更。因此引入ask 类型消息,将重定向和路由缓存分离。

3、分片的迁移

在一个稳定的 Redis Cluster 中,每个 slot 对应的节点都是确定的。在某些情况下,节点和分片需要变更:

1、新的节点作为master加入;

2、某个节点分组需要下线;

3、负载不均衡需要调整 slot 分布。

此时需要进行分片的迁移,迁移的触发和过程控制由外部系统完成。Redis Cluster 只提供迁移过程中需要的原语,包含下面 2 种:

节点迁移状态设置:迁移前标记源/目标节点。
key迁移的原子化命令:迁移的具体步骤。

下面的Demo会介绍slot 1 从节点A 迁移到B的过程。

1、向节点B发送状态变更命令,将B的对应slot 状态置为importing。

2、向节点A发送状态变更命令,将A对应的slot 状态置为migrating。

3、针对A上的 slot 的所有 key,分别向 A 发送 migrate 命令,告知 A 将对应的key 迁移到 B。

当A节点的状态置为 migrating 后,表示对应的slot 正在从 A 迁出,为保证该 slot 数据的一致性。A 此时提供的写服务和通常状态下有所区别,对于某个迁移中的 slot:

如果Client 访问的key 尚未迁出,则正常的处理该key;

如果key已经迁出或者key不存在,则回复Client ASK 信息让其跳转到B处理;
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

当节点B 状态变成 importing 后,表示对应的 slot 正在向 B 迁入。即使 B 能对外提供该slot 的读写服务,但是和通常情况下有所区别:

当Client的访问不是从ask 跳转的,说明Client 还不知道迁移。有可能操作了尚未迁移完成的,处在A上面的key,如果这个key 在A上被修改了,则后续会产生冲突。

所以对于该slot 上所有非ask 跳转的操作,B不会进行操作,而是通过moved 让Client 跳转至A执行。
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

这样的状态控制,保证了同一个key 在迁移之前总是在源节点执行。迁移后总是在目标节点执行,从而杜绝了双写的冲突。迁移过程中,新增加的key 会在目标节点执行,源节点不会新增key。使得迁移有界限,可以在某个确定的时刻结束。

单个key 的迁移过程可以通过原子化的migrate 命令完成。对于 A/B 的slave 节点,是通过主备复制,从而达到增删数据。

当所有key 迁移完成后,Client 通过 cluster setslot 命令设置 B 的分片信息,从而包含了迁入的 slot。设置过程中会让 Epoch自增,并且是Cluster 中的最新值。然后通过相互感知,传播到Cluster 中的其他节点。

failover

同Sentinel 一样,Redis Cluster 也具备一套完整的故障发现、故障状态一致性保证、主备切换机制。

1、failover的状态变迁

1)故障发现:当某个master 宕机时,宕机时间如何被集群其他节点感知。

2)故障确认:多个节点就某个master 是否宕机如何达成一致。

3)slave选举:集群确认了某个master 宕机后,如何将它的slave 升级成新的master;如果有多个slave,如何选择升级。

4)集群结构变更:成功选举成为master后,如何让整个集群知道,以更新Cluster 结构信息。

2、故障发现

Redis Cluster 节点间通过 Redis Cluster Bus 两两周期性的 PING/PONG 交互。当某个节点宕机时,其他Node 发出的PING消息没有收到响应,并且超过一定时间(NODE_TIMEOUT)未收到,则认为该节点故障,将其置为 PFAIL状态(Possible Fail)。后续通过Gossip 发出的 PING/PONG 消息中,这个节点的 PFAIL 状态会传播到集群的其他节点。

Redis Cluster 的节点两两通过 TCP 保持 Redis Cluster Bus 连接,当对PING 无反馈时,可能是节点故障,也可能是TCP 链接断开。如果是TCP 断开导致的误报,虽然误报消息会因为其他节点的正常连接被忽略,但是也可以通过一定的方式减少误报。Redis Cluster 通过 预重试机制 排除此类误报:当 NODE_TIMEOUT / 2 过去了,但是还未收到响应,则重新连接重发 PING 消息,如果对端正常,则在很短的时间内就会有响应。

3、故障确认

对于网络分隔的情况,某个节点(B)并没有故障,但是和A 无法连接,但是和 C/D 等其他节点可以正常联通。此时只会有A 将 B 标记为 PFAIL状态,其他节点认为B 正常。此时A 和C/D 等其他节点信息不一致,Redis Cluster 通过故障 确认协议 达成一致。

集群中每个节点都是Gossip 的接收者,A 也会接收到来自其他节点的Gossip 消息,被告知B 是否处于PFAIL 状态。当A收到来气其他master 节点对于 B 的PFAIL 达到一定数量后,会将 B 的 PFAIL状态升级为 FAIL状态。表示B 已经确认为故障态,后面会发起 slave选举流程。

A节点内部的集群信息中,对于B的状态从 PFAIL 到 FAIL 的变迁,如下图所示:

Redis Cluster原理详解_第1张图片

4、slave选举

上图中,B是A的 master,并且B 已经被集群公认是 FAIL状态了,那么 A 发起竞选,期望成为新的 master。

如果B 有多个slave (A/E/F)都认知到B 处于FAIL 状态了,A/E/F 可能会同时发起竞选。当 B的slave个数 >= 3时,很有可能产生多轮竞选失败。为了减少冲突的出现,优先级高的slave 更有可能发起竞选,从而提升成功的可能性。这里的优先级是slave的数据最新的程度,数据越新的(最完整的)优先级越高。

slave 通过向其他master 发送 FAILVOER_AUTH_REQUEST 消息发起竞选,master 收到后回复 FAILOVER_AUTH_ACK 消息告知是否同意。slave 发送 FAILOVER_AUTH_REQUEST 前会将 currentEpoch 自增,并将最新的Epoch 带入到 FAILOVER_AUTH_REQUEST 消息中,如果自己未投过票,则回复同意,否则回复拒绝。

5、结构变更通知

当slave 收到 过半的master 同意时,会替代B 成为新的 master。此时会以最新的Epoch 通过PONG 消息广播自己成为master,让Cluster 的其他节点尽快的更新拓扑结构。

当B 恢复可用之后,它仍然认为自己是master,但逐渐的通过 Gossip协议 得知 A 已经替代了自己,然后降级为 A 的 slave。

可用性和性能

Redis Cluster 还提供了一些方法可以提升性能和可用性。

1、Redis Cluster的读写分离

对于读写分离的场景,应用对于某些读请求允许舍弃一定的数据一致性,以换取更高的吞吐量。此时希望将读请求交给slave处理,以分担master的压力。

通过分片映射关系,某个slot 一定对应着一个master节点。Client 通过moved 命令,也只会路由到各个master中。即使Client 将请求直接发送到slave上,也会回复moved 到master去处理。

为此,Redis Cluster 引入了 readonly命令。Client 向 slave发送该命令后,不再moved 到 master处理,而是自己处理,这成为slave的 readonly模式。通过 readwrite命令,可以将 slave的 readonly模式重置。

2、master单点保护

假如 Cluster的初始状态如下所示:

Redis Cluster原理详解_第2张图片

上图中A、B两个master 分别有自己的 slave,假设A1 发生宕机,结构变为如下所示:

Redis Cluster原理详解_第3张图片

此时A 成为了单点,一旦A 再次宕机,将造成不可用。此时Redis Cluster 会把B 的某个slave (如 B1 )进行副本迁移,变成A的slave。如下所示:

Redis Cluster原理详解_第4张图片

这样集群中每个master 至少有一个slave,使得Cluster 具有高可用。集群中只需要保持 2*master+1 个节点,就可以保持任一节点宕机时,故障转移后继续高可用。

 

参考:《深入分布式缓存》

你可能感兴趣的:(Redis Cluster原理详解)