LeetCode122:买卖股票的最佳时机 II

该题目和以下题目相关联,感兴趣的小伙伴可直接点击下面的链接!

LeetCode121:买卖股票的最佳时机

LeetCode122:买卖股票的最佳时机 II

LeetCode123:买卖股票的最佳时机 III

LeetCode188:买卖股票的最佳时机 IV

LeetCode309:最佳买卖股票时机含冷冻期

LeetCode714:买卖股票的最佳时机含手续费


目录

一、题目

二、示例

三、思路

四、代码


一、题目

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

二、示例

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3。

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

三、思路

1、贪心算法,一次遍历,只要今天价格小于明天价格就在今天买入然后明天卖出,时间复杂度O(n)

2、动态规划,定义两个数组 dp1,dp2,分别表示持有股票的最大利益未持有股票的最大利益

dp1: 持有股票的最大利益
    - 当天购入股票 dp1[i] = dp2[i - 1] - prices[i]
    - 前几天购入股票 dp1[i] = dp1[i - 1]
dp2: 未持有股票的最大利益
    - 当天卖出股票 dp2[i] = dp1[i - 1] + prices[i]
    - 前几天卖出股票 dp2[i] = dp2[i - 1]

四、代码

1、

class Solution:
    def maxProfit(self, prices):
        if len(prices) == 0:
            return 0

        sum = 0
        for i in range(len(prices) - 1):
            if prices[i + 1] >= prices[i]:
                sum += prices[i + 1] - prices[i]
        return sum

if __name__ == '__main__':
    test = [7,1,5,3,6,4]
    s = Solution()
    ans = s.maxProfit(test)
    print(ans)

2、

class Solution:
    def maxProfit(self, prices) -> int:
        """
        :param prices: List[int]
        :return: int
        dp1: 持有股票的最大利益
            - 当天购入股票 dp1[i] = dp2[i - 1] - prices[i]
            - 前几天购入股票 dp1[i] = dp1[i - 1]
        dp2: 未持有股票的最大利益
            - 当天卖出股票 dp2[i] = dp1[i - 1] + prices[i]
            - 前几天卖出股票 dp2[i] = dp2[i - 1]
        """
        n = len(prices)
        if n == 0:
            return 0

        dp1 = [0 for _ in range(n)]
        dp2 = [0 for _ in range(n)]
        dp1[0] = -prices[0]
        for i in range(1, n):
            dp1[i] = max(dp2[i - 1] - prices[i], dp1[i - 1])
            dp2[i] = max(dp1[i - 1] + prices[i], dp2[i - 1])

        return dp2[-1]

if __name__ == '__main__':
    test = [7,1,5,3,6,4]
    s = Solution()
    ans = s.maxProfit(test)
    print(ans)

 

你可能感兴趣的:(LeetCode,leetcode,python,贪心算法)