- 昇腾NPU节点软件版本检查与升级方法
一、问题背景当我们需要在节点部署DeepSeek大模型时,需要检查昇腾云配套的版本驱动和固件版本,如果发现节点版本不配套建议升级到配套版本。检查方法:npu-smiinfo-tboard-i1|egrep-i"software|firmware"二、升级方法需要注意的是,一定要先升级固件,再升级驱动;如果需要降级版本,流程与升级一样。一般而言,固件包是带有firmware关键字,驱动包带有dirv
- 利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
.30-06Springfield
rnnlstmgru分类人工智能pythonpytorch
文章目录一、程序结构1.1程序整体结构1.2各模块功能关系流程图二、数据预处理模块详解2.1定义字符集和语言类别2.2读取数据2.3人名转换为one-hot编码张量2.4自定义数据集类2.5数据加载器三、模型定义模块详解3.1RNN模型3.2LSTM模型3.3GRU模型四、模型训练与测试模块详解4.1测试模型基本功能4.2模型训练主函数五、结果可视化与对比模块详解六、模型预测模块详解七、案例结果分
- YOLOv8 轴承缺陷检测 使用YOLOv8进行训练、评估和可视化预测结果 包含1440张图片的轴承缺陷检测数据集 YOLO格式或XML格式
OICQQ67658008
YOLOxml深度学习轴承缺陷数据检测算法人工智能
轴承缺陷检测4类1440张names:[‘aocao’,‘aoxian’,‘cashang’,‘huahen’]名称::[‘凹槽’,‘凹陷’,‘卡伤’,‘划痕’]共1440张,8:1:1比例划分train:1152张,val:144张,test:144张标注文件为YOLO适用的txt格式或xml格式。可以直接用于模型训练。YOLOv8轴承缺陷检测importosimporttorchfromIPy
- Flask实现MTV分层
不会吃萝卜的兔子
flaskflask分层flaskMTV分层
版本python3.6flask1.0.2每个版本的路径可能不同,但结构大体一样步骤1.简化入口文件run.pyfromflaskdemoimportappapp.run(host="127.0.0.1",port=80)2.配置文件config.pyDEBUG=False3.模型文件modes.py我的模型文件没有写,你也设置多个model放在一个文件夹下,注意修改路径4.视图文件views.p
- 【Agent实战】用“前置编码器+LLM”复刻ChatGPT附件功能
kakaZhui
大模型Agent入门与代码实战chatgpt人工智能LLMAgentAIGCDeepSeek
1.引言:多模态LLM解耦原生多模态LLM将多种模态的处理能力“内化”于一个庞大的模型中,是技术的前沿。而我们这里讨论的“前置编码器+LLM”方案,则是一种解耦的设计哲学:LLM专注于语言:让强大的文本LLM继续做它最擅长的事情——理解和生成高质量的文本、进行逻辑推理和遵循复杂指令。前置编码器专注于转换:为每种文件类型构建或调用专门的、最优的工具(模型或库)来将其转换为高质量的文本表示。这种方案的
- 基于SpringBoot和Leaflet的区域冲突可视化系统(2025企业级实战方案)
知识产权13937636601
计算机springboot后端java
摘要在全球地缘冲突与应急事件频发的2025年,区域态势可视化系统成为政府及企业的决策刚需。本文提出基于SpringBoot3.2后端与Leaflet1.9.5前端的冲突可视化解决方案,融合多源异构数据(卫星影像、舆情热力、设施状态)构建动态冲突图谱。关键技术突破包括:矢量切片实时聚合(支持100万+目标呈现)、多维度冲突因子权重模型、态势推演沙盘,并在某跨国能源集团实测中实现风险识别效率提升8倍,
- 解密GPT工作原理:Transformer架构详解与自注意力机制剖析
AI智能应用
gpttransformer架构ai
解密GPT工作原理:Transformer架构详解与自注意力机制剖析关键词:GPT、Transformer、自注意力机制、神经网络、语言模型、深度学习、人工智能摘要:本文将深入浅出地解析GPT模型的核心架构——Transformer,重点剖析其革命性的自注意力机制。我们将从基本概念出发,通过生活化的比喻解释复杂的技术原理,并用Python代码示例展示实现细节,最后探讨这一技术的应用场景和未来发展方
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- synchronized的介绍与使用
骑牛小道士
java
synchronizedsynchronized的介绍synchronized的使用方式修饰实例方法修饰静态方法修饰代码块synchronized底层实现原理synchronized关键特性synchronized注意事项synchronized经典使用样例懒加载单例模式的双重检查锁生产者-消费者模型synchronized的介绍在多个线程执行任务时候,会存在资源竞争和数据不一致问题资源竞争:比如
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- G DOM 操作.js
前言:DOM(文档对象模型)操作是实现动态交互的关键技术。通过DOM操作,我们可以获取、修改网页元素,为用户提供了一个丰富多彩的交互体验。目录一、DOM操作的初体验认识元素获取二、DOM操作的进阶元素内容的修改三、DOM操作的高阶元素样式的动态变化四、DOM操作的巅峰元素的添加、删除与事件处理五、DOM操作的奥秘元素遍历与家族关系六、DOM操作的终极挑战性能优化与复杂交互总结一、DOM操作的初体验
- AI大模型的2种模型能力Function call 和ReAct
DeepSeek-大模型系统教程
人工智能react.js前端gitai语言模型
近年来,随着AI大模型的快速发展,如何让这些模型更好地与现实世界交互成为了一个重要课题。FunctionCall和ReAct作为两种重要的模型能力,为大模型提供了更强大的工具调用和任务执行能力。我们将深入探讨这两种能力的背景、原理、应用场景以及它们之间的对比。帮助你深入了解他们的价值。01背景介绍AI大模型(如GPT-4、PaLM等)在自然语言处理、文本生成等任务中表现出色,但它们的能力往往局限于
- DDD领域驱动设计深度解析
目录DDD领域驱动设计深度解析DDD凝聚了软件工程的智慧DDD领域驱动设计的历史什么是领域Domain领域驱动设计领域驱动设计几大原则详解领域驱动模型的概念领域驱动设计的挑战DDD领域驱动设计深度解析DDD凝聚了软件工程的智慧许多人对微服务设计中经常提及的DDD非常推崇,觉得这是最新的架构设计趋势和解决微服务业务划分的终极方法。实际上,DDD概念最早在2004年就提出来了,微服务的前身SOA的概念
- 【openAI库】Python语言openAI库详解:从入门到精通(从0到1手把手教程)
Java八股文
python人工智能开发语言
在人工智能(AI)领域,OpenAI无疑是全球最受瞩目的机构之一。它推出的GPT系列模型、DALL·E等创新技术,正在深刻改变各行各业。作为Python开发者,我们该如何快速上手并高效利用OpenAI的API,成为了提升个人竞争力的关键。本文将带你从零开始,深入解析Python语言中的openAI库,助你掌握AI开发的核心工具,成为AI领域的专家。一、什么是openAI库?它能为开发者带来什么?1
- LLM大模型命名规则与部署硬件实践手册
文章目录一、理论基础:从信息编码到系统设计1.1命名系统的信息论基础1.2硬件架构与模型运行的关系1.3量化技术的数学原理二、国际主流模型命名规则深度解析2.1OpenAI:极简主义与功能导向2.2AnthropicClaude:诗意命名的技术内涵2.3GoogleGemini:统一品牌下的分层架构2.4MetaLlama:开源社区的透明化命名三、国内主流模型命名规则与文化内涵3.1百度文心:知识
- 理想运算放大器的神话与现实:若完美存在,电子世界将如何颠覆?
理想运算放大器(IdealOperationalAmplifier)是电子工程教材中的“完美模型”,它定义了模拟电路设计的理论基石。但若这种完美器件真实存在,整个电子产业将被彻底重构——本章将揭示理想运放的深层特性,并推演其可能引发的技术革命。一、理想运算放大器的终极定义1.1核心特性矩阵理想运放需同时满足以下五个极限条件:开环增益:AOL=∞A_{OL}=\inftyAOL=∞输入阻抗:Zin=
- 世界人工智能大会在即,中国AI布局展现多重深意
未来智慧谷
人工智能世界人工智能大会(WAIC)
2025年世界人工智能大会(WAIC)将于7月26日至28日在上海举行。本次大会以“智能时代同球共济”为主题,展览面积首次突破7万平方米,汇聚了来自30余个国家和地区的1200余位嘉宾,其中包括12位图灵奖、诺贝尔奖得主及80余位中外院士。这一全球性平台的搭建,揭示了中国在人工智能领域深化发展的战略路径。技术展示:从模型开源到终端落地本届大会将呈现3000余项前沿展品,涵盖40余款大模型、60余款
- Gemini 2.5 Pro API恢复免费,每分钟5次、25万tokens及每日100次请求的免费额度
Gemini2.5ProAPI近期宣布恢复免费服务,为开发者提供了更具吸引力的使用条件。根据最新信息,免费层级的API限制为每分钟5次请求、每日100次请求,以及25万tokens的额度。这一免费政策的变化体现了谷歌对该模型的推广策略调整。Gemini2.5Pro作为谷歌的旗舰AI模型,在多模态处理、推理能力和长上下文窗口等方面具有显著优势。其API定价在付费层级为输入每百万token1.25美元
- 谷歌正式推出 Gemini 2.5 系列模型,使 AI 推理性能提升30%。
我的学校你进不来
人工智能大数据语言模型ai
谷歌于2025年6月正式推出Gemini2.5系列模型,核心聚焦推理效率与多模态能力升级,具体要点解读如下:一、三大模型定位与技术亮点Gemini2.5Pro角色定位:主攻复杂推理与多模态分析(“思考型模型”),在数学、编码任务中刷新LMArena榜单记录。上下文能力:支持100万token输入(计划扩展至200万),可解析代码库、大型数据集及混合媒体内容。应用场景:需深度
- 【机器学习】什么是逻辑回归?从入门到精通:掌握逻辑回归与二分类问题的解决之道
宸码
模式识别机器学习机器学习python逻辑回归分类人工智能算法
从入门到精通:掌握逻辑回归与二分类问题的解决之道引言1.1逻辑回归简介1.2逻辑回归的应用场景逻辑回归基本原理2.1逻辑回归概述逻辑回归的基本思想预测类别的概率2.2线性模型与Sigmoid函数线性模型Sigmoid函数Sigmoid函数的性质为什么选择Sigmoid函数2.3逻辑回归的输出:概率值分类决策代价函数与优化数学基础3.1逻辑回归的假设与目标假设目标3.2对数似然函数概率模型对数似然函
- Unity使用讯飞语音模型(语音合成+语音识别+语音唤醒)Window端SDK
苏轼轼
语音识别人工智能
1.查看官方文档、登录并下载我们所需的SDK。语音唤醒需要我们设置唤醒词。讯飞智能语音SDK文档官网讯飞智能语音产品介绍官网在控制台下载对应SDK,由于讯飞官方只提供了C++/C语音版本,我们需要用C#调用下载SDK的dll库文件。2.将dll库拖进Unity项目中如果目标设备为64位,我们选择msc_x64.dll;如果是32位,我们选择msc.dll。另外我们如果要使用语音唤醒功能,还需要wa
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- Rust实现FasterR-CNN目标检测全流程
KENYCHEN奉孝
rustPolars
使用Rust和FasterR-CNN进行目标检测FasterR-CNN是目标检测领域广泛使用的深度学习模型。Rust生态中可以通过tch-rs(Torch绑定)调用预训练的PyTorch模型实现。以下为完整实现步骤:环境准备安装Rust和必要的依赖:cargoaddtchcargoaddanyhow#错误处理下载预训练的FasterR-CNN模型(需PyTorch格式.pt文件),或使用Torch
- UI TARS 和 Magentic-UI的区别和差异
frank0060071
ui运维
UI-TARS和Magentic-UI都是当前前沿的AI驱动自动化工具,但它们在设计理念技术架构和应用场景上存在显著差异。以下是两者的核心区别和对比分析:1.开发背景与目标定位UI-TARS由字节跳动开发,专注于跨平台GUI自动化,强调通过自然语言指令实现端到端的任务执行(如打开应用填写表单等),目标是成为通用型视觉语言模型代理,减少人工干预核心定位:多模态感知与自动化执行,适用于需要高精度界面操
- RK3576 Yolo 部署
1.开发背景Ubuntu下实现yolo计算比较常见,现实中我们需要在各种嵌入式板卡上实现yolo模型,在板卡上运行yolo也是常态。主要参考官方github和野火教程。2.开发需求在RK3576上运行yolov8的官方例程3.开发环境Ubuntu20.04+Conda+Yolov8+RK35764.实现步骤4.1PyTorch文件转ONNX4.1.1下载权重文件下载官方权重文件yolov8n.pt
- Django
ઈ一笑ഒ
django
1.Django和Tornado的关系Django是一个高级PythonWeb框架,它鼓励快速开发和干净、实用的设计。Django遵循MVC(模型-视图-控制器)设计模式的一个变种,称为MTV(模型-模板-视图)。Django框架提供了大量的“开箱即用”功能,包括:ORM(对象关系映射),让数据库操作变得简单。丰富的模板系统,用于快速生成动态网页。强大的表单系统,简化用户输入和验证过程。认证系统、
- Python C10K问题、五种Unix IO模型
贵哥的编程之路(热爱分享 为后来者)
python
一、什么是C10K问题?C10K问题(Concurrency10KProblem)指的是:服务器如何高效地同时处理1万(10,000)个并发连接。早期的服务器和操作系统在面对大量并发IO时,效率极低,容易崩溃或响应缓慢。解决C10K问题,推动了操作系统IO模型的不断演进。二、Unix系统的五种IO模型随着网络和并发需求的提升,Unix系统逐步发展出了五种IO模型,每种模型都在解决并发效率问题上迈进
- Hamiltonian Transformer理论:融合哈密顿力学与Transformer架构的新范式
墨顿
transformer架构深度学习
HamiltonianTransformer理论是一种将经典哈密顿力学原理与现代Transformer架构相结合的新型神经网络范式。这一理论框架试图解决当前深度学习模型在效率、动态系统建模和长期依赖处理等方面的核心挑战。本文将系统梳理HamiltonianTransformer的理论基础、关键创新点、实现方法以及应用前景,并分析其相对于传统Transformer架构的优势与潜在限制。哈密顿力学与T
- 智能驾驶新纪元:Gemini如何重塑车载交互体验
众乐 认证
谷歌GoogleAndroidAutoGemini
在2025年谷歌I/O开发者大会即将拉开帷幕之际,谷歌抛出一则重磅消息:将生成式AI模型Gemini深度融入AndroidAuto系统。这一具有里程碑意义的举措,犹如为车载交互技术注入了一剂强劲的“创新催化剂”,推动其大步迈入全新发展阶段。正如AndroidforCars副总裁PatrickBrady所言,此举绝非对传统语音助手的简单升级,而是极有可能成为“车载体验领域的一场重大变革”。在驾驶场景
- C语言内存的“禁区”:为何不能返回局部变量的地址?
web安全工具库
2025C++学习c语言开发语言
资料合集下载链接:https://pan.quark.cn/s/472bbdfcd014在C语言编程中,指针和内存管理是两大核心,也是许多新手甚至有经验的开发者容易踩坑的地方。一个经典的问题就是:“为什么我的函数返回一个指针,有时候能用,有时候程序就崩溃了?”答案往往藏在C语言的内存分区模型中。今天,我们就根据一份课堂笔记,深入探讨一个关键的“禁区”:从函数返回局部变量的地址,并搞清楚为什么有些地
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分