605. 种花问题

605. 种花问题

假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返False。

示例 1:

输入: flowerbed = [1,0,0,0,1], n = 1
输出: True


示例 2:

输入: flowerbed = [1,0,0,0,1], n = 2
输出: False


注意:

数组内已种好的花不会违反种植规则。
输入的数组长度范围为 [1, 20000]。
n 是非负整数,且不会超过输入数组的大小。


基本思路:贪心算法,尽可能多的插花,那么在两个已经种花[i,j]区间之间,其中,i,j已经可以种花,其他都是没有种花,最多可以种多少花?

  • 真正可以种花的区间是[i+2,j-2],有效区间长度为区间长度len=j-i-3,最多可以种(len+1)/2个花
  • 对于起点[0,i],在i位置上种花,有效区间长度[0,i-2],其长度为len=i-1,最多可以种(len+1)/2个花
  • 对于终点[j,size-1],在j位置上种花,有效区间长度为[j+2,size-1],其长度len=flowerbed.size()-j-2,最多可以种(len+1)/2个花
    bool canPlaceFlowers(vector& flowerbed, int n) {
        int cnt=0;
        int pre=-1;
        for(int i=0;i=n)
                return true;
        }

        if(pre<0){
            cnt=(flowerbed.size()+1)/2;
        }
        else if(flowerbed.size()>pre+1){
            cnt+=(flowerbed.size()-1-pre)/2;
        }
        return cnt>=n;
    }

基本思路:思考那种情况可以种花

  • 0|0|0,即当前节点的左右都为空
  • 左边界|0|0,即当前节点为0
  • 0|0|右边界,即当前节点为flowerbed.size()-1;
    bool canPlaceFlowers(vector& flowerbed, int n) {
        int i=0;
        while(i0){
            if(flowerbed[i]==1){
                i+=2;
            }
            else if(flowerbed[i]==0&&(i==0||flowerbed[i-1]==0)&&(i==flowerbed.size()-1||flowerbed[i+1]==0)){
                n--;
                i+=2;

            }
            else    
                i+=3;
        }
        return n<=0;
    }

基本思路:对上述方法的改进,当前为1或者可以种花的情况下,直接跳到i+2,因为i+1必然为零,否则的话,直接跳到i+3,因为下一个必然为1.

    bool canPlaceFlowers(vector& flowerbed, int n) {
        int i=0;
        while(i0){
            if(flowerbed[i]==1){
                i+=2;
            }
            else if(i==flowerbed.size()-1||flowerbed[i+1]==0){
                n--;
                i+=2;

            }
            else    
                i+=3;
        }
        return n<=0;
    }

 

你可能感兴趣的:(leetcode,贪心)