numpy.ndarray.reshape()函数的参数问题

我们知道numpy.ndarray.reshape()是用来改变numpy数组的形状的,但是它的参数会有一些特殊的用法,这里我们进一步说明一下。代码如下:

import numpy as np


class Debug:
    def __init__(self):
        self.array1 = np.ones(6)

    def mainProgram(self):
        print("The value of array1 is: ")
        print(self.array1)
        print("The array2 is: ")
        array2 = self.array1.reshape(2, 3)
        print(array2)


if __name__ == '__main__':
    main = Debug()
    main.mainProgram()
"""
The value of array1 is: 
[1. 1. 1. 1. 1. 1.]
The array2 is: 
[[1. 1. 1.]
 [1. 1. 1.]]
"""

这里我们看到我们将一个长度为6的一维数组变成了一个尺寸为(2, 3)的二维数组,这里的2代表2行,对应y轴,3代表3列,对应x轴。

然而有时候我们会在reshape中使用到-1这个参数,当使用这个参数时,会将数组重新塑形变得十分简单。代码如下:

class Debug:
    def __init__(self):
        self.array1 = np.ones(6)

    def mainProgram(self):
        print("The value of array1 is: ")
        print(self.array1)
        print("The array2 is: ")
        array2 = self.array1.reshape(-1, 3)
        print(array2)


if __name__ == '__main__':
    main = Debug()
    main.mainProgram()
"""
The value of array1 is: 
[1. 1. 1. 1. 1. 1.]
The array2 is: 
[[1. 1. 1.]
 [1. 1. 1.]]
"""

我们可以看到当我们将reshape的第一个参数变为-1时,我们仍旧获得了一个尺寸为(2, 3)的数组,其实在这里,-1代表的意思为6 / 3 =2,其中6是被塑形一维数组的长度,3是我们指定的二维数组一个方向的维度。这样的好处就是当数据量比较大时,我们在二维数组重新塑形时只需要指定一个维度上的尺寸,另一个维度上的尺寸python会自动为我们计算。

如果大家觉得有用,请高抬贵手给一个赞让我上推荐让更多的人看到吧~

你可能感兴趣的:(python科学计算,python,numpy)