前言:
看到网上大部分TensorFlowGPU教程都需要看配置需要装一大堆东西,然后就来更新一篇我知道的最简便的安装GPU版本的方法了,不用安装CUDA CUDNN VS啥的,可能目前内容上有点粗糙,后续会慢慢完善的。个人安装的目的就是为了重新下载一个与keras版本匹配的TensorFlow,具体可以通过这个网址查看Keras与TensorFlow的对应版本,然后我卸载了之前的TensorFlowGPU版本,顺便来记录一下安装过程,当然,读者可以根据自己的需要去下载其他的TensorFlow-GPU
卸载指令:conda uninstall tensorflow-gpu==1.14.0
conda uninstall keras==1.0.8
但是这里我用conda卸载报错,应该是默认的镜像源的处理速度太慢导致超时,这里的处理方法是可以考虑换成清华源再卸载,不过我的环境里有pip就测试用pip卸载了,行得通。后面卸载Keras也是一样的原理。
按照下图的顺序来,②的命名自己随意,③的选项建议选3.6或7吧,或者有更高版本也好,尽量别选2.X,2.7的据说都快要停止维护了,对python新手而言也不要选版本太高的,可能不稳定。
再点击“open terminal”进入终端界面:
3.接下来就是重头戏了,安装TensorFlow-GPU:
在终端输入:conda install -c aaronzs tensorflow-gpu
默认应该是下载最新版本,如果要特定版本,就conda install -c aaronzs tensorflow-gpu==xxx
但是我发现这个方法无法下载2.2.0版本,所以我退而求其次地下载了2.2.1了
这个过程可能会报warning什么的,如果可以运行就忽略,有报什么错欢迎在评论区留言。
然后就是漫长地等待了
完成后再输入 conda list看看
4.安装成功!!结束了!!!!对就是这么简单!!!!
但是,最后我们还是测试一下到底有没有配置成功:
因为我用的是Pycharm,这里再附加一下Pycharm配置Anaconda环境的过程:
按照下图所示,或者直接Ctrl+Alt+S
打开设置之后就按照下图操作,选完之后就全点"OK"
操作之后,可以看到右下角会显示当前的环境:
然后关键的一步测试了!操作如下:
新建一个python文件,然后输入以下代码,然后运行:
import tensorflow as tf
import os
#os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
a = tf.constant(1.)
b = tf.constant(2.)
print(a+b)
print(tf.__version__)
print('GPU:', tf.config.list_physical_devices('GPU'))
print(tf.test.is_gpu_available())
输出结果为:
tf.Tensor(3.0, shape=(), dtype=float32)
2.1.0
GPU: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
True
当然,,由于是用GPU跑的,所以会有这些信息:
2021-01-06 11:54:57.365737: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.178440: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2021-01-06 11:55:00.862896: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1050 computeCapability: 6.1
coreClock: 1.493GHz coreCount: 5 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 104.43GiB/s
2021-01-06 11:55:00.863272: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.868083: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2021-01-06 11:55:00.872729: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2021-01-06 11:55:00.874234: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2021-01-06 11:55:00.879152: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2021-01-06 11:55:00.881920: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2021-01-06 11:55:00.892460: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2021-01-06 11:55:00.892777: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2021-01-06 11:55:00.893388: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2021-01-06 11:55:00.895935: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1050 computeCapability: 6.1
coreClock: 1.493GHz coreCount: 5 deviceMemorySize: 2.00GiB deviceMemoryBandwidth: 104.43GiB/s
2021-01-06 11:55:00.896318: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2021-01-06 11:55:00.896510: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2021-01-06 11:55:00.896701: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2021-01-06 11:55:00.896891: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2021-01-06 11:55:00.897081: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2021-01-06 11:55:00.897269: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2021-01-06 11:55:00.897458: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2021-01-06 11:55:00.897699: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
2021-01-06 11:55:01.557072: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1096] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-01-06 11:55:01.557299: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] 0
2021-01-06 11:55:01.557426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] 0: N
2021-01-06 11:55:01.557723: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1335 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
然后就结束了!!!完成!!!✿✿ヽ(°▽°)ノ✿
如果过程有报什么错欢迎在评论区留言!!