The Bottom of a Graph
Time Limit: 3000MS |
|
Memory Limit: 65536K |
Total Submissions: 7514 |
|
Accepted: 3083 |
Description
We will use the following (standard) definitions from graph theory. Let
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product
V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.
Let
n be a positive integer, and let
p=(e1,...,en) be a sequence of length
n of edges
ei∈E such that
ei=(vi,vi+1) for a sequence of vertices
(v1,...,vn+1). Then
p is called a path from vertex
v1 to vertex
vn+1 in
G and we say that
vn+1 is reachable from
v1, writing
(v1→vn+1).
Here are some new definitions. A node
v in a graph
G=(V,E) is called a sink, if for every node
w in
G that is reachable from
v,
v is also reachable from
w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,
bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph
G. Each test case starts with an integer number
v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that
1<=v<=5000. That is followed by a non-negative integer
e and, thereafter,
e pairs of vertex identifiers
v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
Sample Output
1 3
2
Source
- 题目大意 若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。
- 强连通+缩点
- 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。
- 不管怎么样都会存在一个出度为0的点,所以说If the bottom is empty, print empty line是没有用的。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int VM=5010;
const int INF=999999999;
struct Edge{
int to,nxt;
}edge[VM*VM];
int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],indeg[VM],outdeg[VM],belong[VM];
int stack[VM],res[VM];
void addedge(int cu,int cv){
edge[cnt].to=cv;
edge[cnt].nxt=head[cu];
head[cu]=cnt++;
}
void Init(){
cnt=0,atype=0,dep=0,top=0;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(indeg,0,sizeof(indeg));
memset(outdeg,0,sizeof(outdeg));
memset(belong,0,sizeof(belong));
}
void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=1;
for(int i=head[u];i!=-1;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=0;
}while(u!=j);
}
}
int main(){
//freopen("input.txt","r",stdin);
while(~scanf("%d",&n) && n){
Init();
scanf("%d",&m);
int u,v;
while(m--){
scanf("%d%d",&u,&v);
addedge(u,v);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
Tarjan(i);
int tmp;
for(int i=1;i<=n;i++){
tmp=belong[i];
for(int j=head[i];j!=-1;j=edge[j].nxt){
int v=edge[j].to;
if(belong[i]!=belong[v])
outdeg[belong[i]]++;
}
}
cnt=0;
for(int i=1;i<=atype;i++)
if(outdeg[i]==0)
for(int j=1;j<=n;j++)
if(belong[j]==i)
res[cnt++]=j;
sort(res,res+cnt);
if(cnt!=0){
for(int i=0;i<cnt-1;i++)
printf("%d ",res[i]);
printf("%d\n",res[cnt-1]);
}else
printf("\n");
}
return 0;
}