NJUPT《信安数基》复习题

第 1 章

1. 设 a = 1859 , b = 1573 , a=1859, \quad b=1573, a=1859,b=1573, 计算 s , t , s, t, s,t, 使得 a s + b t = ( a , b ) a s+b t=(a, b) as+bt=(a,b)

运用广义欧几里得除法:
1859 = 1 ⋅ 1573 + 286 1573 = 5 ⋅ 286 + 143 286 = 2 ⋅ 143 + 0 \begin{array}{rr} 1859&=&1 \cdot 1573&+&286 \\ 1573&=&5 \cdot 286&+&143 \\ 286&=&2 \cdot 143&+&0 \end{array} 18591573286===1157352862143+++2861430
然后:
143 = ( − 5 ) ⋅ 286 + 1573 = ( − 5 ) ⋅ ( ( − 1 ) ⋅ 1573 + 1859 ) + 1573 = 6 ⋅ 1573 + ( − 5 ) ⋅ 1573 = ( − 5 ) ⋅ 1859 + 6 ⋅ 1573 \begin{array}{rr} 143&=&(-5) \cdot 286&+&1573 \\ &=&(-5) \cdot ((-1)\cdot 1573+1859)&+&1573 \\ &=&6\cdot 1573&+&(-5)\cdot 1573 \\ &=&(-5)\cdot 1859&+&6\cdot 1573 \end{array} 143====(5)286(5)((1)1573+1859)61573(5)1859++++15731573(5)157361573
因此,整数 s = − 5 , t = 6 s=-5,t=6 s=5,t=6 使得 a s + b t = ( a , b ) . as+bt=(a,b). as+bt=(a,b).

2. 最大公约数 (4655, 12075)=

运用广义欧几里得除法:
12075 = 2 ⋅ 4655 + 2765 4655 = 1 ⋅ 2765 + 1890 2765 = 1 ⋅ 1890 + 875 1890 = 2 ⋅ 875 + 140 875 = 6 ⋅ 140 + 35 140 = 4 ⋅ 35 + 0 \begin{array}{rr} 12075&=&2 \cdot 4655&+&2765 \\ 4655&=&1 \cdot 2765&+&1890 \\ 2765&=&1 \cdot 1890&+&875 \\ 1890&=&2 \cdot 875&+&140 \\ 875&=&6 \cdot 140&+&35 \\ 140&=&4 \cdot 35&+&0 \end{array} 12075465527651890875140======24655127651189028756140435++++++27651890875140350
所以 ( 4655 , 12075 ) = 35 (4655, 12075) = 35 (4655,12075)=35.

3. 满足 125 x + 17 y = ( 125 , 17 ) 125 x+17 y=(125,17) 125x+17y=(125,17) x x x y y y 分别为

运用广义欧几里得除法:
125 = 7 ⋅ 17 + 6 17 = 2 ⋅ 6 + 5 6 = 1 ⋅ 5 + 1 5 = 5 ⋅ 1 + 0 \begin{array}{rr} 125&=&7 \cdot 17&+&6 \\ 17&=&2 \cdot 6&+&5 \\ 6&=&1 \cdot 5&+&1 \\ 5&=&5 \cdot 1&+&0 \end{array} 1251765====717261551++++6510
所以 ( 125 , 17 ) = 1. (125, 17) = 1. (125,17)=1.
1 = ( − 1 ) ⋅ 5 + 6 = ( − 1 ) ⋅ ( ( − 2 ) ⋅ 6 + 17 ) + 6 = 3 ⋅ 6 + ( − 1 ) ⋅ 17 = 3 ⋅ ( ( − 7 ) ⋅ 17 + 125 ) + ( − 1 ) ⋅ 17 = 3 ⋅ 125 + ( − 22 ) ⋅ 17 \begin{array}{rr} 1&=&(-1) \cdot 5&+&6 \\ &=&(-1) \cdot ((-2)\cdot 6+17)&+&6 \\ &=&3\cdot 6&+&(-1)\cdot 17 \\ &=&3\cdot ((-7)\cdot 17+125)&+&(-1)\cdot 17\\ &=&3\cdot 125&+&(-22)\cdot 17 \end{array} 1=====(1)5(1)((2)6+17)363((7)17+125)3125+++++66(1)17(1)17(22)17
因此,整数 x = 3 , y = − 22 x=3,y=-22 x=3,y=22 使得 125 x + 17 y = ( 125 , 17 ) . 125x+17y=(125,17). 125x+17y=(125,17).

4. a , b a, b a,b 是两个正整数,则其最小公倍数 [ a , b ] = a ⋅ b ( a , b ) [a, b]=\frac{a\cdot b}{(a,b)} [a,b]=(a,b)ab

5. 设 a , b a, b a,b 是两个正整数,且有素因数分解:

a = p 1 α 1 ⋯ p s α s , α i ≥ 0 ; b = p 1 β 1 ⋯ p s β s , β i ≥ 0 ; i = 1 , … , s \large a=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, \alpha_{i} \geq 0 ; \quad b=p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}, \beta_{i} \geq 0 ; \quad i=1, \ldots, s a=p1α1psαs,αi0;b=p1β1psβs,βi0;i=1,,s

则其最小公倍数 [ a , b ] = [a, b]= [a,b]= 最大公约数 ( a , b ) = (a, b)= (a,b)=

[ a , b ] = p 1 max ⁡ ( α 1 , β 1 ) ⋯ p s max ⁡ ( α s , β s ) \large [a, b]=p_{1}^{\max(\alpha_{1},\beta_{1})} \cdots p_{s}^{\max(\alpha_{s},\beta_{s})} [a,b]=p1max(α1,β1)psmax(αs,βs)

( a , b ) = p 1 min ⁡ ( α 1 , β 1 ) ⋯ p s min ⁡ ( α s , β s ) \large (a, b)=p_{1}^{\min(\alpha_{1},\beta_{1})} \cdots p_{s}^{\min(\alpha_{s},\beta_{s})} (a,b)=p1min(α1,β1)psmin(αs,βs)

6. 证明: 任意三个连续整数的乘积都被 6 整除。

对于任意的 n ∈ Z n\in Z nZ,三个连续整数乘积为 ( n − 1 ) ⋅ n ⋅ ( n + 1 ) (n-1)\cdot n\cdot (n+1) (n1)n(n+1)

  1. n = 2 k , k ∈ Z n=2k,k\in Z n=2k,kZ 时, 2 k 2k 2k 2 2 2 的倍数,所以 2 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 2|(n-1)\cdot n\cdot (n+1). 2(n1)n(n+1).
  2. n = 2 k + 1 , k ∈ Z n=2k+1,k\in Z n=2k+1,kZ 时, n − 1 = 2 k n-1=2k n1=2k 2 2 2 的倍数,所以 2 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 2|(n-1)\cdot n\cdot (n+1). 2(n1)n(n+1).

所以对于任意的 n ∈ Z n\in Z nZ,有 2 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 2|(n-1)\cdot n\cdot (n+1). 2(n1)n(n+1).

  1. n = 3 k , k ∈ Z n=3k,k\in Z n=3k,kZ 时, 3 k 3k 3k 3 3 3 的倍数,所以 3 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 3|(n-1)\cdot n\cdot (n+1). 3(n1)n(n+1).
  2. n = 3 k + 1 , k ∈ Z n=3k+1,k\in Z n=3k+1,kZ 时, n − 1 = 3 k n-1=3k n1=3k 3 3 3 的倍数,所以 3 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 3|(n-1)\cdot n\cdot (n+1). 3(n1)n(n+1).
  3. n = 3 k + 2 , k ∈ Z n=3k+2,k\in Z n=3k+2,kZ 时, n + 1 = 3 k + 3 n+1=3k+3 n+1=3k+3 3 3 3 的倍数,所以 3 | ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 3|(n-1)\cdot n\cdot (n+1). 3(n1)n(n+1).

所以对于任意的 n ∈ Z n\in Z nZ,有 3 ∣ ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 3|(n-1)\cdot n\cdot (n+1). 3(n1)n(n+1).

由①②且 ( 2 , 3 ) = 1 (2,3)=1 (2,3)=1,所以 6 ∣ ( n − 1 ) ⋅ n ⋅ ( n + 1 ) . 6|(n-1)\cdot n\cdot (n+1). 6(n1)n(n+1). 所以任意三个连续整数的乘积都被 6 整除。

7. 设 m > n m>n m>n 是正整数,证明 2 n − 1 ∣ 2 m − 1 2^{n}-1 \mid 2^{m}-1 2n12m1 的充要条件是 n ∣ m n \mid m nm

充分性:

已知 n ∣ m n|m nm 成立,即有 m = q n m=q n m=qn,则
2 m − 1 = 2 q n − 1 = ( 2 n − 1 ) [ 2 n ( q − 1 ) + 2 n ( q − 2 ) + ⋯ + 2 n + 1 ] = ( 2 n − 1 ) k \begin{aligned} 2^{m}-1 &=2^{q n}-1 \\ &=\left(2^{n}-1\right)\left[2^{n(q-1)}+2^{n(q-2)}+\cdots+2^n+1]\right.\\ &=\left(2^{n}-1\right) k \end{aligned} 2m1=2qn1=(2n1)[2n(q1)+2n(q2)++2n+1]=(2n1)k
因此 2 m − 1 2^{m}-1 2m1 可以整除 2 n − 1 2^{n}-1 2n1

必要性:
已知 2 m − 1 2^{m}-1 2m1 可以整除 2 n − 1 2^{n}-1 2n1,则
2 m − 1 = ( 2 n − 1 ) k = ( 2 n − 1 ) [ 2 n ( q − 1 ) + 2 n ( q − 2 ) + ⋯ + 2 n + 1 ] = 2 q n − 1 \begin{aligned} 2^{m}-1 &=\left(2^{n}-1\right) k \\ &=\left(2^{n}-1\right)\left[2^{n(q-1)}+2^{n(q-2)}+\cdots+2^{n}+1]\right.\\ &=2^{q n}-1 \\ \end{aligned} 2m1=(2n1)k=(2n1)[2n(q1)+2n(q2)++2n+1]=2qn1
所以 x m = x q n x^{m}= x^{q n} xm=xqn m = q n m=q n m=qn

因此 m m m 能够整除 n n n 成立

8. 设 a = 666 , b = 1414 , a=666, \quad b=1414, a=666,b=1414, 计算 s , t , s, t, s,t, 使得 a s + b t = ( a , b ) a s+b t=(a, b) as+bt=(a,b)

运用广义欧几里得除法:
1414 = 2 ⋅ 666 + 82 666 = 8 ⋅ 82 + 10 82 = 8 ⋅ 10 + 2 10 = 5 ⋅ 2 + 0 \begin{array}{rr} 1414&=&2 \cdot 666&+&82 \\ 666&=&8 \cdot 82&+&10 \\ 82&=&8 \cdot 10&+&2 \\ 10&=&5 \cdot 2&+&0 \end{array} 14146668210====266688281052++++821020
所以 ( a , b ) = 2 (a, b)=2 (a,b)=2
2 = ( − 8 ) ⋅ 10 + 82 = ( − 8 ) ⋅ ( ( − 8 ) ⋅ 82 + 666 ) + 82 = ( − 8 ) ⋅ 666 + 65 ⋅ 82 = ( − 8 ) ⋅ 666 + 65 ⋅ ( ( − 2 ) ⋅ 666 + 1414 ) = ( − 138 ) ⋅ 666 + 65 ⋅ 1414 \begin{array}{rr} 2&=&(-8) \cdot 10&+&82 \\ &=&(-8) \cdot ((-8) \cdot 82+666)&+&82 \\ &=&(-8) \cdot 666&+&65\cdot 82 \\ &=&(-8) \cdot 666&+&65\cdot ((-2)\cdot 666 + 1414) \\ &=&(-138) \cdot 666&+&65\cdot 1414 \\ \end{array} 2=====(8)10(8)((8)82+666)(8)666(8)666(138)666+++++8282658265((2)666+1414)651414
因此,整数 s = − 138 , t = 65 s=-138,t=65 s=138,t=65 使得 a s + b t = ( a , b ) . as+bt=(a,b). as+bt=(a,b).

9. 证明: 17 \sqrt{17} 17 是无理数。

假设 17 \sqrt{17} 17 是有理数, 则 ∃   p , q , \exists\ p, q,  p,q, 使 17 = p q \sqrt{17}=\frac{p}{q} 17 =qp

所以存在互质的 p , q , p 2 = 17 q 2 p, q, p^{2}=17 q^{2} p,q,p2=17q2 ,素数 17 17 17 能够整除 p 2 p^2 p2,所以 17 17 17 也能整除 p p p

由于 q 2 = p 2 17 q^{2}=\frac{p^{2}}{17} q2=17p2 ,所以素数 17 17 17 能够整除 q 2 q^2 q2,那么 17 17 17 也能整除 q q q

所以 p p p q q q 存在最大公因数 17. 17. 17. p , q p, q p,q 互质矛盾,假设不成立, 17 \sqrt{17} 17 是无理数得证。

第 2 章

1. 设 m = 13 m=13 m=13 ,则其绝对值最小完全剩余系(简化剩余系等)为 { − 6 , − 5 , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 } \{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\} { 6,5,4,3,2,1,0,1,2,3,4,5,6}

2. 写出模 21 的简化剩余系 { 1 , 2 , 4 , 5 , 8 , 10 , 11 , 13 , 16 , 17 , 19 , 20 } \{1,2,4,5,8,10,11,13,16,17,19,20\} { 1,2,4,5,8,10,11,13,16,17,19,20}

3. 写出模 9 的完全剩余系(每个数为偶数) { 0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 } \{0,2,4,6,8,10,12,14,16\} { 0,2,4,6,8,10,12,14,16}

4. 证明: 设 m 1 , m 2 m_{1}, m_{2} m1,m2 是两个互素的正整数,若 k 1 , k 2 k_{1}, k_{2} k1,k2 分别遍历 m 1 , m 2 m_{1}, m_{2} m1,m2 的完全剩余系,则

m 1 ⋅ k 2 + m 2 ⋅ k 1 m_{1} \cdot k_{2}+m_{2} \cdot k_{1} m1k2+m2k1 遍历模 m 1 m 2 m_{1} m_{2} m1m2 的完全剩余系。

5. φ ( 450 ) = 120 \varphi(450)=120 φ(450)=120

先分解 450 = 2 ⋅ 3 2 ⋅ 5 2 450=2 \cdot 3^2 \cdot 5^2 450=23252,所以 φ ( 450 ) = ( 2 − 1 ) ( 3 − 1 ) ( 5 − 1 ) ⋅ 3 ⋅ 5 = 120 \varphi(450)=(2-1)(3-1)(5-1)\cdot 3\cdot 5=120 φ(450)=(21)(31)(51)35=120.

6. 利用模平方算法计算 50 1 13   m o d   667 501^{13} \bmod 667 50113mod667; 31 2 13   m o d   667 312^{13} \bmod 667 31213mod667

50 1 13   m o d   667 = 163 501^{13} \bmod 667=163 50113mod667=163

31 2 13   m o d   667 = 468 312^{13} \bmod 667=468 31213mod667=468

7. 证明: 如果 p , q p, q p,q 是不同的素数,则 p q − 1 + q p − 1 ≡ 1 (   m o d   p q ) p^{q-1}+q^{p-1} \equiv 1(\bmod p q) pq1+qp11(modpq)

因为p,q是不同的素数,由费马小定理,有 q p − 1 ≡ 1   m o d   p ,   p q − 1 ≡ 1   m o d   q q^{p-1}\equiv 1\bmod p,\ p^{q-1}\equiv 1\bmod q qp11modp, pq11modq

所以存在 k 1 , k 2 ∈ Z k_1,k_2 \in Z k1,k2Z,使 q p − 1 − 1 = k 1 p ,   p q − 1 − 1 = k 2 q . q^{p-1}-1=k_1p,\ p^{q-1}-1=k_2q. qp11=k1p, pq11=k2q.

所以 ( q p − 1 − 1 ) ⋅ ( p q − 1 − 1 ) = k 1 k 2 p q (q^{p-1}-1)\cdot (p^{q-1}-1)=k_1k_2pq (qp11)(pq11)=k1k2pq,等式两边对 p q pq pq 取模得 p q − 1 + q p − 1 ≡ 1 (   m o d   p q ) p^{q-1}+q^{p-1} \equiv 1(\bmod p q) pq1+qp11(modpq)

8. 2003 年 5 月 9 日是星期五,则第 2 20080509 2^{20080509} 220080509 天是星期____

由费马小定理, 2 6   m o d   7 2^6\bmod 7 26mod7 20080509   m o d   6 = 3 ,   2 3   m o d   7 = 1 20080509\bmod 6=3,\ 2^3\bmod 7=1 20080509mod6=3, 23mod7=1,星期六

9. 求 8 ⋅ 9 ⋅ 10 ⋅ 11 ⋅ 12 ⋅ 13   m o d   7 = 6 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \bmod 7=6 8910111213mod7=6

威尔逊(Wilson)定理: ( p − 1 ) ! ≡ − 1   m o d   p . (p-1)!\equiv -1\bmod p. (p1)!1modp.

8 ⋅ 9 ⋅ 10 ⋅ 11 ⋅ 12 ⋅ 13 ≡ 6 ! ≡ − 1 ≡ 6   m o d   7 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13\equiv 6!\equiv-1\equiv 6\bmod 7 89101112136!16mod7

10. 证明: 如果 c 1 , c 2 , … , c φ ( m ) c_{1}, c_{2}, \ldots, c_{\varphi(m)} c1,c2,,cφ(m) 是模 m m m 的简化剩余系,则 c 1 + c 2 + … + c φ ( m ) ≡ 0 (   m o d   m ) c_{1}+c_{2}+\ldots+c_{\varphi(m)} \equiv 0(\bmod m) c1+c2++cφ(m)0(modm)

11. 证明对任意的整数 a , ( a , 561 ) = 1 , a, \quad(a, 561)=1, a,(a,561)=1, 都有 a 560 ≡ 1   m o d   561 , a^{560} \equiv 1\bmod 561, a5601mod561, 561 561 561 是合数。

12. 设 a , b , c , m a,b,c,m a,b,c,m 是正整数, m > 1 , ( b , m ) = 1 \mathrm{m}>1, \quad(b, m)=1 m>1,(b,m)=1 并且 b a ≡ 1   m o d   m , b c ≡ 1   m o d   m , b^{a} \equiv 1 \bmod m, \quad b^{c} \equiv 1 \bmod m, ba1modm,bc1modm, d = ( a , c ) , d=(a, c), d=(a,c), 证明 b d ≡ 1   m o d   m ∘ b^{d} \equiv 1 \bmod m_{\circ} bd1modm

第 3 章

1. 求解一次同余式 33 x ≡ 44 (   m o d   121 ) ; 127 x ≡ 833 (   m o d   1012 ) 。 33 x \equiv 44(\bmod 121) ; 127 x \equiv 833(\bmod 1012) 。 33x44(mod121);127x833(mod1012)

33 x ≡ 44 (   m o d   121 ) 33 x \equiv 44(\bmod 121) 33x44(mod121):解 33 x − 121 y = 44 33x-121y=44 33x121y=44
121 = 3 ⋅ 33 + 22 33 = 1 ⋅ 22 + 11 22 = 2 ⋅ 11 + 0 \begin{array}{rr} 121&=&3 \cdot 33&+&22 \\ 33&=&1 \cdot 22&+&11 \\ 22&=&2 \cdot 11&+&0 \end{array} 1213322===333122211+++22110
所以 ( 33 , 121 ) = 11. (33,121)=11. (33,121)=11.
11 = ( − 1 ) ⋅ 22 + 33 = ( − 1 ) ⋅ ( ( − 3 ) ⋅ 33 + 121 ) + 33 = ( − 1 ) ⋅ 121 + 4 ⋅ 33 \begin{array}{rr} 11&=&(-1) \cdot 22&+&33 \\ &=&(-1) \cdot ((-3)\cdot 33+121)&+&33 \\ &=&(-1)\cdot 121 &+& 4\cdot 33 \end{array} 11===(1)22(1)((3)33+121)(1)121+++3333433
33 ⋅ 4 − 121 ⋅ 1 = 11 33\cdot 4-121\cdot 1=11 3341211=11 4 ( 33 ⋅ 4 − 121 ⋅ 1 ) = 44 4(33\cdot 4-121\cdot 1)=44 4(3341211)=44 x = 5 + 11 k , k = 1 , 2 , ⋯   , 10 x=5+11k,k=1,2,\cdots,10 x=5+11k,k=1,2,,10

127 x ≡ 833 (   m o d   1012 ) 127 x \equiv 833(\bmod 1012) 127x833(mod1012) 127 x − 1012 y = 833 127x-1012y=833 127x1012y=833
1012 = 7 ⋅ 127 + 123 127 = 1 ⋅ 123 + 4 123 = 30 ⋅ 4 + 3 4 = 1 ⋅ 3 + 1 3 = 3 ⋅ 1 + 0 \begin{array}{rr} 1012&=&7 \cdot 127&+&123 \\ 127&=&1 \cdot 123&+&4 \\ 123&=&30 \cdot 4&+&3 \\ 4&=&1 \cdot 3&+&1 \\ 3&=&3 \cdot 1&+&0 \end{array} 101212712343=====712711233041331+++++1234310
所以 ( 127 , 1012 ) = 1 (127,1012)=1 (127,1012)=1
1 = ( − 1 ) ⋅ 3 + 4 = ( − 1 ) ⋅ ( ( − 30 ) ⋅ 4 + 123 ) + 4 = ( − 1 ) ⋅ 123 + 31 ⋅ 4 = ( − 1 ) ⋅ 123 + 31 ⋅ ( ( − 1 ) ⋅ 123 + 127 ) = ( − 32 ) ⋅ 123 + 31 ⋅ 127 = ( − 32 ) ⋅ ( ( − 7 ) ⋅ 127 + 1012 ) + 31 ⋅ 127 = ( − 32 ) ⋅ 1012 + 255 ⋅ 127 \begin{array}{rr} 1&=&(-1) \cdot 3&+&4 \\ &=&(-1) \cdot ((-30)\cdot4+123)&+&4 \\ &=&(-1) \cdot 123&+&31\cdot 4 \\ &=&(-1) \cdot 123&+&31\cdot ((-1)\cdot 123+127) \\ &=&(-32) \cdot 123&+&31\cdot127 \\ &=&(-32) \cdot ((-7)\cdot 127+1012)&+&31\cdot127 \\ &=&(-32) \cdot 1012&+&255\cdot127 \\ \end{array} 1=======(1)3(1)((30)4+123)(1)123(1)123(32)123(32)((7)127+1012)(32)1012+++++++4431431((1)123+127)3112731127255127
所以127的逆元是255, x = 255 ⋅ 833   m o d   1012 = 907. x=255\cdot833\bmod 1012=907. x=255833mod1012=907.

2. 将同余式方程 23 x ≡ 1   m o d   140 23 x \equiv 1\bmod140 23x1mod140 化为同余式方程组,并用中国剩余定理求解。

{ 23 x ≡ 1 (   m o d   2 ) 23 x ≡ 1 (   m o d   2 ) 23 x ≡ 1 (   m o d   5 ) 23 x ≡ 1 (   m o d   7 ) \left\{\begin{array}{l}23x \equiv 1(\bmod 2) \\23x \equiv 1(\bmod 2) \\ 23x \equiv 1(\bmod 5) \\ 23x \equiv 1(\bmod 7)\end{array}\right. 23x1(mod2)23x1(mod2)23x1(mod5)23x1(mod7) => { x ≡ 1 (   m o d   2 ) x ≡ 2 (   m o d   5 ) x ≡ 4 (   m o d   7 ) \left\{\begin{array}{l}x \equiv 1(\bmod 2) \\ x \equiv 2(\bmod 5) \\ x \equiv 4(\bmod 7)\end{array}\right. x1(mod2)x2(mod5)x4(mod7) M 1 = 35 , M 2 = 28 , M 3 = 20 M_1=35,M_2=28,M_3=20 M1=35,M2=28,M3=20

x = 1 ⋅ 35 ⋅ 1 + 2 ⋅ 28 ⋅ 2 + 4 ⋅ 20 ⋅ 6   m o d   140 = 627   m o d   140 = 67 x=1\cdot 35\cdot 1+2\cdot 28\cdot 2+4\cdot 20\cdot 6\bmod 140=627\bmod 140=67 x=1351+2282+4206mod140=627mod140=67

x ≡ 67   m o d   140 x\equiv 67\bmod 140 x67mod140

3. 解同余方程组 { x ≡ 1 (   m o d   5 ) x ≡ 5 (   m o d   6 ) x ≡ 4 (   m o d   7 ) \left\{\begin{array}{l}x \equiv 1(\bmod 5) \\ x \equiv 5(\bmod 6) \\ x \equiv 4(\bmod 7)\end{array}\right. x1(mod5)x5(mod6)x4(mod7)

m = 5 ⋅ 6 ⋅ 7 = 210 , M 1 = 42 , M 2 = 35 , M 3 = 30 m=5\cdot 6\cdot 7=210,M_1=42,M_2=35,M_3=30 m=567=210,M1=42,M2=35,M3=30

x = 1 ⋅ 42 ⋅ 3 + 5 ⋅ 35 ⋅ 5 + 4 ⋅ 30 ⋅ 4   m o d   210 = 1481   m o d   210 = 11   m o d   210 x=1\cdot 42\cdot 3 + 5\cdot 35\cdot 5 + 4\cdot 30\cdot 4 \bmod 210=1481\bmod 210=11\bmod 210 x=1423+5355+4304mod210=1481mod210=11mod210

x ≡ 11   m o d   210 x\equiv 11\bmod 210 x11mod210

4. 同余方程 x 4 + 7 x + 4 ≡ 0 (   m o d   3 ) x^{4}+7 x+4 \equiv 0(\bmod 3) x4+7x+40(mod3) 的解为

由欧拉定理 x 2 ≡ 1   m o d   3 x^2\equiv 1\bmod 3 x21mod3,所以 x 4 ≡ 1   m o d   3 x^4\equiv 1\bmod 3 x41mod3. 1 + 7 x + 4 ≡ 0 (   m o d   3 ) 1+7x+4\equiv 0(\bmod 3) 1+7x+40(mod3)

7 x ≡ − 5 ≡ 1 (   m o d   3 ) 7x\equiv -5\equiv 1(\bmod 3) 7x51(mod3),即求解 7 x ≡ 1 (   m o d   3 ) 7x\equiv 1(\bmod 3) 7x1(mod3),可以枚举一下 0 , 1 , 2 0,1,2 0,1,2,发现只有 x ≡ 1   m o d   3 x\equiv1\bmod 3 x1mod3 成立。

所以解为 x ≡ 1 (   m o d   3 ) . x\equiv 1 (\bmod 3). x1(mod3).

5. (判断) 同余方程的解数一定不超过同余方程的次数: 错

参考《信息安全数学基础》P109 - 3.3.1 高次同余式的解数

P110 - 例 3.3.1, 四次同余式,有 6 个解,解数超过了次数。

你可能感兴趣的:(信安数基)