当今人更智能的主流方向–连接主义
专家系统的操作
类似if else语句,直接计算判断
(如:花萼长>花萼宽 且 花瓣长/花瓣款>2 则未1杂色鸢尾 )
神经网络方法
大量采集花萼和花瓣的长宽数据,构成数据集。把数据集放入搭建的网络结构,网络优化参数得到模型,模型读入数字特征,识别输出结果。
多个输入值与各自的权重w的乘积加上偏置b后的总和再输出结果y
神经元的计算模型 (MP模型)
x是花萼和花瓣的四个特征值情况 | w是输入层到输出层各条边的权重情况构成的“权重矩阵” |
---|---|
(一行四列) | (四行三列) |
损失函数(loss function):预测值y与标准答案y_。
用来判断当前的情况,从而得到最优的w和b
鸢尾花分类:梯度下降法
梯度下降法:沿着损失啊还能输的梯度下降的方向,寻找损失函数的最小值,得到最优解的方法。
梯度下降法更新参数的计算 ,
反向传播(从后向前,逐层求损失函数对每层神经元参数的偏导数,迭代更新所有的参数)
w t + 1 = w t − l r ∗ ∂ l o s s ∂ w t w_{t+1}= w_{t}-lr*\frac {\partial loss}{\partial w_t} wt+1=wt−lr∗∂wt∂loss
学习率(learning rate ,lr):是个超参数。过小速度太慢,过大,合理结果可能再最小值附近震荡无法收敛
loss是损失函数,如 l o s s = ( w + 1 ) 2 loss=(w+1)^2 loss=(w+1)2, ∂ l o s s ∂ w = 2 w + 2 \frac {\partial loss}{\partial w}=2w+2 ∂w∂loss=2w+2
优化参数的目的就是找到是损失函数lose值最小的w=-1值
张量(tensor):多维数组(列表) 阶:张量的维数
维数 | 阶 | 名字 | 例子 | |
---|---|---|---|---|
0-D | 0 | 标量 scalar | s=1 2 3 | 一个单独的数 |
1-D | 1 | 向量 vector | v=[1,2,3] | 一维数组 |
2-D | 2 | 矩阵 matrix | m=[[1,2,3],[4,5,6],[7,8,9]] | 矩阵 |
n-D | n | 张量 | t=[[[[(n个) |
**如何创建张量
Tensor**tf.constan(张量内容,dtype=数据类型(可选))
import tensorflow as tf a= tf.constan([1,5],dtype=tf.int64) print (a) print(a.dtype) print(a.dshap)
将numpy的数据类型转换为Tensor数据类型,有
tf.convert_to_tensor(数据名,dtype=数据类型)
import tensorflow as tf import numpy as np a=np.arange(0,5)#a是一个数组 b=tf.convert_to_tensor(a,dtype=tf.int64)#将a转换成tensor类型存到b print(a) print(b)
创建全为0的张量
tf.zeros(维度)
创建全为1的张量tf.ones(维度)
创建全为指定值的张量`tf.fill(维度,指定值)a=tf.zeros([2,3]) b=tf.ones(4) c=tf.fill([2,2],9)
生成 正太分布的随机数,默认均值为0,标准差1
tf.random.normal(维度,mean=均值,stddev=标准差)
生成阶段是正态分布(两倍标准差范围内的随机数)tf.random.turncated_normal)(维度,mean=均值,stddve=标准差)
生成均匀分布随机函数[minval,maxval]
tf.random.uniform(维度,minval=最小值,maxval=最大值)
强制tensor转化为该数据类型
tf.casst(张量名,dtype=数据类型)
计算张量维度上元素的最小值tf.reduce_min(张量名)
计算张量维度上元素的最大值tf.reduce_max(张量名)
理解axis:二维张量或数组中,
调整axis=0代表跨行(经度,down),竖着来
调整axis=1代表跨列(经度,across),横着来
计算张量沿指定维度的平均值
tf.reduce_mean(张量名,axis=操作轴)
计算张量眼指定维度的和
tf.reduce_sum(张量名,axis=操作轴 )
tf.Variable()
将变量标记为“可训练”,被标记的变量会在反向传播中记录梯度信息。神经网络训练中常用该函数标记待训练参数。
例:w=tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))
来标记待训练参数
tf,add
、tf.subtract
、tf.multiply
、tf.divide
。(只有维度相同的两个张量,才可以进行四则运算)tf.square(a)
、tf .pow(a,n)
、tf.sqrt(a)
tf.matmul(a,b)
。其中,a是mk,b是kn阶的矩阵tf.data.Dataset.from_tensor_slices(数据集,标签l)
生成输入特征、标签对,构建数据集。(Numpy和Tensor都可以用该语句读入数据)tf.GradientTape
用来求导数例: 用with结构记录计算过程,gradient求张量的梯度
with tf.GradientTape() as tape: w=tf.Viriable(tf.constant(3.0)) loss=tf.pow(w,2) grad=tape.gradient(loss,w)#(函数loss,对谁求导w) print(grad)
enumerate(列表名)
枚举,遍历每个元素,组合为索引 + 元素,常在for循环中使用。(枚举出来的每个元素前有索引号)seq=[`one `,`two`,`three`] for i,element in enumerate(seq): print(i,element)```
tf.one_hot(待转换数据,depth=几分类)
独热编码(one-hot encoding):1表示是,0表示非如:鸢尾花的种类有0、1、2三种,想要表示这三种标签,分别存在的独热码是100、010、001。
tf.nn,softmax(x)
实现公式计算符合概率分布。assign_sub(w要自减的内容)
常用于参数的自更新,等自更新的参数w先被指定为可训练,即为tf.Variable
类型才可实现自更新。tf.argmax(张量名,axis=操作轴)
用于返回张量沿纵向(axis=0)、横向(axis=1)最大值的索引号(从0开始数)从sklearn包 datasets 读入数据集,语法为:
from sklearn.datasets import load_iris
x_data = datasets.load_iris().data #返回iris数据集所有输入特征
y_data = datasets.load_iris().target #返回iris数据集所有标签
具体的读入操作如下:
from sklearn import datasets
from pandas import DataFrame
import pandas as pd
x_data = datasets.load_iris().data # .data返回iris数据集所有输入特征
y_data = datasets.load_iris().target # .target返回iris数据集所有标签
print("x_data from datasets: \n", x_data)
print("y_data from datasets: \n", y_data)
x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度']) # 为表格增加行索引(左侧)和列标签(上方)
pd.set_option('display.unicode.east_asian_width', True) # 设置列名对齐
print("x_data add index: \n", x_data)
x_data['类别'] = y_data # 新加一列,列标签为‘类别’,数据为y_data
print("x_data add a column: \n", x_data)
#类型维度不确定时,建议用print函数打印出来确认效果
#从sklearn包datasets 读入数据集:
from sklearn.datasets import datasets
x_data = datasets.load_iris().data #返回iris数据集所有输入特征
y_data = datasets.load_iris().target #返回iris数据集所有标签
np.random.seed(116) # 使用相同的seed,使输入特征/标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
#前120个作为训练集,后30个作为测试集,要求没有交集
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
#用from_tensor_slices把训练集的输入特征和标签配对打包,打包成batch
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
w1 = tf.Variable(tf.random.truncated_normal([ 4, 3 ], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([ 3 ], stddev=0.1, seed=1))
嵌套循环迭代,with结构更新参数,显示当前loss
for epoch in range(epoch): #数据集级别迭代
for step, (x_train, y_train) in enumerate(train_db): #batch级别迭代
with tf.GradientTape() as tape: # 记录梯度信息
前向传播过程计算y
计算总loss
grads = tape.gradient(loss, [ w1, b1 ])#w1,b1分别求偏导
w1.assign_sub(lr * grads[0]) #参数自更新
b1.assign_sub(lr * grads[1])
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
#每一轮的喂入是32组,总共120组数需要4轮,loss_all除4得到平均损失
计算当前参数前向传播后的准确率,显示当前acc
for x_test, y_test in test_db:
y = tf.matmul(h, w) + b # y为预测结果
y = tf.nn.softmax(y) # y符合概率分布
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
pred = tf.cast(pred, dtype=y_test.dtype) #调整数据类型与标签一致
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)#如果预测值和标签相等,correct自加一
correct = tf.reduce_sum (correct) # 将每个batch的correct数加起来
total_correct += int (correct) # 将所有batch中的correct数加起来
total_number += x_test.shape [0]
acc = total_correct / total_number#准确率
print("test_acc:", acc)
画acc曲线(loss同理)
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴名称
plt.ylabel('Acc') # y轴名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线
plt.legend()
plt.show()
# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)每32个生成一个batch
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr = 0.1 # 学习率为0.1
train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 循环500轮
loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1
y = tf.nn.softmax(y) # 把前向传播的预测结果变为概率分布
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test.dtype)
# 若分类正确,预测的与结果相等,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct += int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()