我所知道设计模式之原型模式

前言需求


接下里介绍的是Java 的设计模式之一:原型模式

现在有一只羊 tom

姓名为: tom, 年龄为:1,颜色为:白色

请编写程序创建和 tom 羊 属性完全相同的 10 只羊

请问你会怎么制作呢?

一、什么是原型模式

原型模式(Prototype 模式)是指:用原型实例指定创建对象的种类,并且通过拷贝这些原型,创建新的对象

原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象,无需知道如何创建的细节

工作原理是:通过将一个原型对象传给那个要发动创建的对象,这个要发动创建的对象通过请求原型对象拷贝它们自己来实施创建,即对象.clone()

形象的理解:齐天大圣孙悟空拔出猴毛, 变出其它孙大圣

我所知道设计模式之原型模式_第1张图片

原理结构图说明
Prototype : 原型类,声明一个克隆自己的接口
ConcretePrototype: 具体的原型类, 实现一个克隆自己的操作
Client: 让一个原型对象克隆自己,从而创建一个新的对象(属性一样)

我所知道设计模式之原型模式_第2张图片

二、通过示例说明情况

我们按照传统方式解决之前提出的克隆羊问题

我所知道设计模式之原型模式_第3张图片

class Sheep{

    public String name;

    public int age;

    public String color;

    public Sheep(String name, int age, String color) {
        this.name = name;
        this.age = age;
        this.color = color;
    }

    public String   getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public String getColor() {
        return color;
    }

    public void setColor(String color) {
        this.color = color;
    }
}

我们生成一只羊,然后根据这只羊的属性创建十只羊

public static void main(String[] args) {
        //传统的方法
        Sheep sheep = new Sheep("tom", 1, "白色");
        Sheep sheep2 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
        Sheep sheep3 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
        Sheep sheep4 = new Sheep(sheep.getName(), sheep.getAge(), sheep.getColor());
        
        //.........
    }
传统的方式的优缺点
  • 优点是比较好理解,简单易操作
  • 创建新的对象时,总是需要重新获取原始对象的属性,如果创建的对象比较复杂时,效率较低
  • 总是需要重新初始化对象,而不是动态地获得对象运行时的状态, 不够灵活
改进的思路分析

思路:Java 中 Object 类是所有类的根类,Object 类提供了一个 clone()方法.

该方法可以将一个 Java 对象复制一份,但是需要实现 clone 的Java 类必须要实现一个接口 Cloneable,该接口表示该类能够复制且具有复制的能力 =>原型模式

class Sheep  implements Cloneable {

    //省略关键代码....

    //克隆该实例,使用默认的clone方法来完成
    @Override
    protected Object clone(){
        Sheep sheep = null;
        try {
            sheep = (Sheep) super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }
        return sheep;
    }
}

那么我们是使用demo看看,与传统模式有何变化呢?

public static void main(String[] args) {
    //传统的方法
    Sheep sheep = new Sheep("tom", 1, "白色");
    Sheep sheep2 = (Sheep)sheep.clone();
    Sheep sheep3 = (Sheep)sheep.clone();
    Sheep sheep4 = (Sheep)sheep.clone();

    //.........
}

我们在使用原型模式的时候,克隆则就不无需每次new一个对象

并且如果Sheep方法,如何添加了一个字段属性,也会自己完成初始化

class Sheep  implements Cloneable {

    private String name;

    private int age;

    private String color;
    
    private String address;


    public Sheep(String name, int age, String color, String address) {
        this.name = name;
        this.age = age;
        this.color = color;
        this.address = address;
    }

    public String getAddress() {
        return address;
    }

    public void setAddress(String address) {
        this.address = address;
    }
}
public static void main(String[] args) {
    //传统的方法
    Sheep sheep = new Sheep("tom", 1, "白色","内蒙古");
    Sheep sheep2 = (Sheep)sheep.clone();
    Sheep sheep3 = (Sheep)sheep.clone();
    Sheep sheep4 = (Sheep)sheep.clone();

    //.........
}

三、Spring框架源码解析

Spring 中原型 bean 的创建,就是原型模式的应用

我们使用一个类来举例说明一下

class Monster{

    private Integer id = 10;

    private String nickName = "牛魔王";

    private String skill = "芭蕉扇";

    public Monster() {
        System.out.println("monster 创建....");
    }
    
    public Monster(Integer id, String nickName, String skill) {
        this.id = id;
        this.nickName = nickName;
        this.skill = skill;
    }

    public Integer getId() {
        return id;
    }

    public void setId(Integer id) {
        this.id = id;
    }

    public String getNickName() {
        return nickName;
    }

    public void setNickName(String nickName) {
        this.nickName = nickName;
    }

    public String getSkill() {
        return skill;
    }

    public void setSkill(String skill) {
        this.skill = skill;
    }
}

同时我们这里还有一个bean的xml文件配置


        

接下来我们使用demo,测试原型模式下的bean,获取对象是否相等

public static void main(String[] args) {

    ApplicationContext applicationContext = new ClassPathXmlApplicationContext("bean.xml");
    Object bean1 =applicationContext.getBean("id01");
    System.out.println("bean1 = "+bean1);


    Object bean2 =applicationContext.getBean("id01");
    System.out.println("bean2 = "+bean2);

    System.out.println(bean1 == bean2);
}

运行结果如下:
monster 创建....
bean1=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'}
monster 创建....
bean2=Monster{id=10,nickName='牛魔王', skill='芭蕉扇'}
false

说明这两个对象,他的变量相同,但是不是同一个对象,返回了false

那么我们需要知道他是在哪里用到了原型呢?我们debug看看

public abstract class AbstractApplicationContext extends DefaultResourceLoader implements ConfigurableApplicationContext, DisposableBean {

    //省略其他关键代码....
    public Object getBean(String name) throws BeansException {
        return this.getBeanFactory().getBean(name);
    }

    public  T getBean(String name, Class requiredType) throws BeansException {
        return this.getBeanFactory().getBean(name, requiredType);
    }

    public  T getBean(Class requiredType) throws BeansException {
        return this.getBeanFactory().getBean(requiredType);
    }

    public Object getBean(String name, Object... args) throws BeansException {
        return this.getBeanFactory().getBean(name, args);
    }

    public boolean containsBean(String name) {
        return this.getBeanFactory().containsBean(name);
    }

    public boolean isSingleton(String name) throws NoSuchBeanDefinitionException {
        return this.getBeanFactory().isSingleton(name);
    }

    public boolean isPrototype(String name) throws NoSuchBeanDefinitionException {
        return this.getBeanFactory().isPrototype(name);
    }
}

我们发现他是采用BeanFactory里的getBean,那么我进到里面去看

public abstract class AbstractRefreshableApplicationContext extends AbstractApplicationContext {

    //省略其他关键代码....
    public final ConfigurableListableBeanFactory getBeanFactory() {
        synchronized(this.beanFactoryMonitor) {
            if (this.beanFactory == null) {
                throw new IllegalStateException("BeanFactory not initialized or already closed - call 'refresh' before accessing beans via the ApplicationContext");
            } else {
                return this.beanFactory;
            }
        }
    }
}

返回工厂后,我们就进BeanFactory的getBean方法里看看

public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {

    
    //省略其他关键代码....
    public AbstractBeanFactory() {}

    public AbstractBeanFactory(BeanFactory parentBeanFactory) {
        this.parentBeanFactory = parentBeanFactory;
    }

    public Object getBean(String name) throws BeansException {
        return this.doGetBean(name, (Class)null, (Object[])null, false);
    }

    public  T getBean(String name, Class requiredType) throws BeansException {
        return this.doGetBean(name, requiredType, (Object[])null, false);
    }

    public Object getBean(String name, Object... args) throws BeansException {
        return this.doGetBean(name, (Class)null, args, false);
    }

    public  T getBean(String name, Class requiredType, Object... args) throws BeansException {
        return this.doGetBean(name, requiredType, args, false);
    }    
}

发现是调用doGetBean方法,那我们再进去doGetBean方法看看

public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {

    
    //省略其他关键代码....
    
    protected  T doGetBean(String name, Class requiredType, final Object[] args, boolean typeCheckOnly) throws BeansException {
        final String beanName = this.transformedBeanName(name);
        Object sharedInstance = this.getSingleton(beanName);
        Object bean;
        if (sharedInstance != null && args == null) {
            if (this.logger.isDebugEnabled()) {
                if (this.isSingletonCurrentlyInCreation(beanName)) {
                    this.logger.debug("Returning eagerly cached instance of singleton bean '" + beanName + "' that is not fully initialized yet - a consequence of a circular reference");
                } else {
                    this.logger.debug("Returning cached instance of singleton bean '" + beanName + "'");
                }
            }

            bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, (RootBeanDefinition)null);
        } else {
            if (this.isPrototypeCurrentlyInCreation(beanName)) {
                throw new BeanCurrentlyInCreationException(beanName);
            }

            BeanFactory parentBeanFactory = this.getParentBeanFactory();
            if (parentBeanFactory != null && !this.containsBeanDefinition(beanName)) {
                String nameToLookup = this.originalBeanName(name);
                if (args != null) {
                    return parentBeanFactory.getBean(nameToLookup, args);
                }

                return parentBeanFactory.getBean(nameToLookup, requiredType);
            }

            if (!typeCheckOnly) {
                this.markBeanAsCreated(beanName);
            }

            try {
                final RootBeanDefinition mbd = this.getMergedLocalBeanDefinition(beanName);
                this.checkMergedBeanDefinition(mbd, beanName, args);
                String[] dependsOn = mbd.getDependsOn();
                String[] arr$;
                if (dependsOn != null) {
                    arr$ = dependsOn;
                    int len$ = dependsOn.length;

                    for(int i$ = 0; i$ < len$; ++i$) {
                        String dependsOnBean = arr$[i$];
                        this.getBean(dependsOnBean);
                        this.registerDependentBean(dependsOnBean, beanName);
                    }
                }

                if (mbd.isSingleton()) {
                    sharedInstance = this.getSingleton(beanName, new ObjectFactory() {
                        public Object getObject() throws BeansException {
                            try {
                                return AbstractBeanFactory.this.createBean(beanName, mbd, args);
                            } catch (BeansException var2) {
                                AbstractBeanFactory.this.destroySingleton(beanName);
                                throw var2;
                            }
                        }
                    });
                    bean = this.getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
                } else if (mbd.isPrototype()) {
                    arr$ = null;

                    Object prototypeInstance;
                    try {
                        this.beforePrototypeCreation(beanName);
                        prototypeInstance = this.createBean(beanName, mbd, args);
                    } finally {
                        this.afterPrototypeCreation(beanName);
                    }

                    bean = this.getObjectForBeanInstance(prototypeInstance, name, beanName, mbd);
                } else {
                    String scopeName = mbd.getScope();
                    Scope scope = (Scope)this.scopes.get(scopeName);
                    if (scope == null) {
                        throw new IllegalStateException("No Scope registered for scope '" + scopeName + "'");
                    }

                    try {
                        Object scopedInstance = scope.get(beanName, new ObjectFactory() {
                            public Object getObject() throws BeansException {
                                AbstractBeanFactory.this.beforePrototypeCreation(beanName);

                                Object var1;
                                try {
                                    var1 = AbstractBeanFactory.this.createBean(beanName, mbd, args);
                                } finally {
                                    AbstractBeanFactory.this.afterPrototypeCreation(beanName);
                                }

                                return var1;
                            }
                        });
                        bean = this.getObjectForBeanInstance(scopedInstance, name, beanName, mbd);
                    } catch (IllegalStateException var21) {
                        throw new BeanCreationException(beanName, "Scope '" + scopeName + "' is not active for the current thread; " + "consider defining a scoped proxy for this bean if you intend to refer to it from a singleton", var21);
                    }
                }
            } catch (BeansException var23) {
                this.cleanupAfterBeanCreationFailure(beanName);
                throw var23;
            }
        }

        if (requiredType != null && bean != null && !requiredType.isAssignableFrom(bean.getClass())) {
            try {
                return this.getTypeConverter().convertIfNecessary(bean, requiredType);
            } catch (TypeMismatchException var22) {
                if (this.logger.isDebugEnabled()) {
                    this.logger.debug("Failed to convert bean '" + name + "' to required type [" + ClassUtils.getQualifiedName(requiredType) + "]", var22);
                }

                throw new BeanNotOfRequiredTypeException(name, requiredType, bean.getClass());
            }
        } else {
            return bean;
        }
    }
} 
 

代码很多,我这里采用图片的方式标注出来

我所知道设计模式之原型模式_第4张图片

关于在spring框架中原型模式,由于小编水平有限,暂且先了解这么多

四、浅拷贝和深拷贝

浅拷贝的介绍

对于数据类型是基本数据类型的成员变量,浅拷贝会直接进行值传递,也就是将该属性值复制一份给新的对象

对于数据类型是引用数据类型的成员变量,比如说成员变量是某个数组、某个类的对象等,那么浅拷贝会进行引用传递,也就是只是将该成员变量的引用值(内存地址)复制一份给新的对象

为实际上两个对象的该成员变量都指向同一个实例。

在这种情况下,在一个对象中修改该成员变量会影响到另一个对象的该成员变量值

比如说之前克隆羊,我们添加一个对象字段

class Sheep  implements Cloneable {


    //省略其他关键性代码.....

    private Sheep friend;
    
    public Sheep(String name, int age, String color, String address, Sheep friend) {
        this.name = name;
        this.age = age;
        this.color = color;
        this.address = address;
        this.friend = friend;
    }
    
    public Sheep getFriend() {
        return friend;
    }

    public void setFriend(Sheep friend) {
        this.friend = friend;
    }
}

这时我们创建demo ,一起看看体会引用拷贝地址指向新对象

public static void main(String[] args) {

        Sheep friend = new Sheep("jack", 2, "黑色","内蒙古");
        Sheep sheep = new Sheep("tom", 1, "白色","内蒙古",friend);
        Sheep sheep2 = (Sheep)sheep.clone();
        Sheep sheep3 = (Sheep)sheep.clone();
        Sheep sheep4 = (Sheep)sheep.clone();
        System.out.println(sheep2 + "hashCode"+sheep2.friend.hashCode());
        System.out.println(sheep3+ "hashCode"+sheep3.friend.hashCode());
        System.out.println(sheep4+ "hashCode"+sheep4.friend.hashCode());
    }
    
运行结果如下:
Sheep{name='tom', age=1, color='白色', address='内蒙古}hashCode460141958
Sheep{name='tom', age=1, color='白色', address='内蒙古}hashCode460141958
Sheep{name='tom', age=1, color='白色', address='内蒙古}hashCode460141958

有没有发现,我们输出好朋友的时候,都是指向同一个地址

我所知道设计模式之原型模式_第5张图片

这证明我们没有真正的拷贝一个好朋友的对象,我们称这为浅拷贝

浅拷贝是使用默认的 clone()方法来实现:就是sheep = (Sheep) super.clone();

深拷贝基本介绍

复制对象的所有基本数据类型的成员变量值

为所有引用数据类型的成员变量申请存储空间,并复制每个引用数据类型成员变量所引用的对象,直到该对象可达的所有对象。也就是说,对象进行深拷贝要对整个对象(包括对象的引用类型)进行拷贝

深拷贝实现方式 1:重写 clone 方法来实现深拷贝

深拷贝实现方式 2:通过对象序列化实现深拷贝(推荐)

我们通过新的示例类来举例说明这两种情况

class DeepCloneableTarget implements Cloneable {


    public String name; //String 属 性
    public String cloneClass; //String 属 性

    public DeepCloneableTarget() {
        super();
    }
    
    public DeepCloneableTarget(String name, String cloneClass) {
        this.name = name;
        this.cloneClass = cloneClass;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getCloneClass() {
        return cloneClass;
    }

    public void setCloneClass(String cloneClass) {
        this.cloneClass = cloneClass;
    }

    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

我们使用默认的拷贝方法,现在我们添加多一个类添加对象引用

class DeepProtoType implements  Cloneable {

    public String name; //String 属 性
    public DeepCloneableTarget deepCloneableTarget;// 引用类型

    public DeepProtoType() {}

    public DeepProtoType(String name, DeepCloneableTarget deepCloneableTarget) {
        this.name = name;
        this.deepCloneableTarget = deepCloneableTarget;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public DeepCloneableTarget getDeepCloneableTarget() {
        return deepCloneableTarget;
    }

    public void setDeepCloneableTarget(DeepCloneableTarget deepCloneableTarget) {
        this.deepCloneableTarget = deepCloneableTarget;
    }
}

那么我们的第一种方式是:采用重写 clone 方法来实现深拷贝

class DeepProtoType implements  Cloneable {


    //省略其他关键代码....
    @Override
    protected Object clone() throws CloneNotSupportedException {

        //完成对基本数据类型和String类型的拷贝
        Object deep = null;
        deep = super.clone();

        //再完成对类里的引用类型拷贝
        DeepProtoType deepProtoType = (DeepProtoType)deep;
        deepProtoType.setDeepCloneableTarget((DeepCloneableTarget)deepCloneableTarget.clone());

        return deepProtoType;
    }
}

接下里我们使用demo 看看第一种方式的深拷贝效果怎么样?

public static void main(String[] args) {

    DeepCloneableTarget target = new DeepCloneableTarget("大牛", "大牛的类");
    DeepProtoType p1 = new DeepProtoType();
    p1.setName("小明");
    p1.setDeepCloneableTarget(target);

    try {
        //方式 1  完成深拷贝
        DeepProtoType p2 = (DeepProtoType)p1.clone();
        System.out.println("p1.name = " + p1.name + " p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode());
        System.out.println("p2.name = " + p1.name + " p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());
    } catch (CloneNotSupportedException e) {
        e.printStackTrace();
    }
}

运行结果如下:
p1.name = 小明 p1.deepCloneableTarget=460141958
p2.name = 小明 p2.deepCloneableTarget=1163157884

这种方式采用先拷贝基本数据类型再拷贝引用类型

1.这种方式如果DeepCloneableTarget里也有引用类型的类,那么它也需要重写这个方法,这就会导致多重重写

2.如果多个类的引用就会导致很繁琐,工作量巨大,关系复杂

结论:只适合一层关系的引用,实际不太推荐

那么我们的第二种方式是:通过对象序列化实现深拷贝(推荐)

使用序列化的方式,我们需要实现Serializable接口

public class DeepProtoType implements Serializable, Cloneable{
    
    //省略其他关键代码....
}


public class DeepCloneableTarget implements Serializable, Cloneable{

    //省略其他关键代码....
}
public class DeepProtoType implements Serializable, Cloneable{


    //省略其他关键代码....
    
    //深拷贝 - 方式 2 通过对象的序列化实现 (推荐)
    public Object deepClone() {

        //创建流对象
        ByteArrayOutputStream bos = null;
        ObjectOutputStream oos = null;
        ByteArrayInputStream bis = null;
        ObjectInputStream ois = null;

        try {
            //序列化
            bos = new ByteArrayOutputStream();
            oos = new ObjectOutputStream(bos);
            oos.writeObject(this); //当前这个对象以对象流的方式输出

            //反序列化
            bis = new ByteArrayInputStream(bos.toByteArray());
            ois = new ObjectInputStream(bis);
            DeepProtoType copyObj = (DeepProtoType) ois.readObject();
            return copyObj;
        } catch (Exception e) {
            return null;
        } finally {
            //关闭流
            try {
                bos.close();
                oos.close();
                bis.close();
                ois.close();
            } catch (Exception e2) {
            }
        }
    }
    
}

接下里我们使用demo 看看第二种方式的深拷贝效果怎么样?

public static void main(String[] args) {

        DeepCloneableTarget target = new DeepCloneableTarget("大牛", "小牛");
        DeepProtoType p1 = new DeepProtoType();
        p1.setName("小明");
        p1.setDeepCloneableTarget(target);

        //方式 2  完成深拷贝
        DeepProtoType p2 = (DeepProtoType) p1.deepClone();
        System.out.println("p1.name = " + p1.name + " p1.deepCloneableTarget=" + p1.deepCloneableTarget.hashCode());
        System.out.println("p2.name = " + p1.name + " p2.deepCloneableTarget=" + p2.deepCloneableTarget.hashCode());
}

运行结果如下:
p1.name = 小明 p1.deepCloneableTarget=1836019240
p2.name = 小明 p2.deepCloneableTarget=363771819

五、原型模式的注意事项和细节

创建新的对象比较复杂时,可以利用原型模式简化对象的创建过程,同时也能够提高效率

不用重新初始化对象,而是动态地获得对象运行时的状态

如果原始对象发生变化(增加或者减少属性),其它克隆对象的也会发生相应的变化,无需修改代码

在实现深克隆的时候可能需要比较复杂的代码

缺点:需要为每一个类配备一个克隆方法,这对全新的类来说不是很难,但对已有的类进行改造时,需要修改其源代码,违背了 ocp 原则,这点请注意.

参考资料


尚硅谷:设计模式(韩顺平老师):单例模式

Refactoring.Guru:《深入设计模式》

你可能感兴趣的:(java,uml,程序员,设计模式,原型模式)