大学生数学竞赛

大学生数学竞赛,不是数学建模,分为数学组和非数学组,我是非数学组。

全国初赛只考高数,全国总决赛考高数和线性代数。当年我是我们学校唯一 一个进入全国总决赛的,非数学组就我一个,数学组全军覆没。

下面贴一下我当年的习题和笔记:

上半册:

36个习题的小结

极限题 1 2 3 4 5 12 17 18 21 23 35

微分中值定理 7 8 9 10 11 13 14 15 16 20.5

微分方程25 30

导数6 18.5 24 26 27 28 29 31

多解题5 11 19

易错题12

施笃兹定理1 2 19

三角换元4

达布定理 11 32

1,设 X 1 ∈ ( 0 , 1 ) , X n + 1 = X n ( 1 − X n ) X_{1} \in(0,1), \quad X_{n+1}=X_{n}\left(1-X_{n}\right) \quad X1(0,1),Xn+1=Xn(1Xn) 证明 lim ⁡ n → ∞ n X n = 1 \lim _{n \rightarrow \infty} n X_{n}=1 limnnXn=1
证明:
0 < X n < 1 00<Xn<1,则 0 < X n + 1 = X n ( 1 − X n ) < 1 00<Xn+1=Xn(1Xn)<1
∴ ∀ n ,   0 < X n < 1 , \therefore \forall{n}, \,0n,0<Xn<1, { X n } \left\{X_{n}\right\} { Xn} 递减
∴ lim ⁡ n → ∞ X n = c \therefore \lim _{n \rightarrow \infty} X_{n}=c limnXn=c
∴ c = c ( 1 − c ) \therefore c=c(1-c) c=c(1c) c = 0 c=0 c=0
1 X n + 1 = 1 X n + 1 1 − X n \frac{1}{X_{n+1}}=\frac{1}{X_{n}}+\frac{1}{1-X_{n}} Xn+11=Xn1+1Xn1
∴ lim ⁡ n → ∞ 1 n X n = lim ⁡ n → ∞ 1 X n + 1 − 1 X n n + 1 − n = lim ⁡ n → ∞ 1 1 − X n = 1 ( \therefore \lim _{n \rightarrow \infty} \frac{1}{n X_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{X_{n+1}}-\frac1{X_n}}{n+1-n}=\lim _{n \rightarrow \infty}\frac{1}{1-X_{n}}=1( limnnXn1=limnn+1nXn+11Xn1=limn1Xn1=1(施笃兹定理 ) ) )
∴ lim ⁡ n → ∞ n X n = 1 \therefore\lim_{n \rightarrow \infty}n X_{n}=1 limnnXn=1

​​​​​​​2,设 a 0 = 0 , a 1 = 1 + sin ⁡ ( − 1 ) , a n = 1 + sin ⁡ ( a n − 1 − 1 ) a_{0}=0, \quad a_{1}=1+\sin (-1), \quad a_{n}=1+\sin \left(a_{n-1}-1\right) \quad a0=0,a1=1+sin(1),an=1+sin(an11) n → ∞ lim ⁡ 1 n ∑ k = 1 n a k _{n \rightarrow \infty}^{\lim } \frac{1}{n} \quad \sum_{k=1}^{n} a_{k} nlimn1k=1nak
解: 设 b n = a n − 1 b_{n}=a_{n}-1 bn=an1
b n = sin ⁡ b n − 1 b_{n}=\sin b_{n-1} bn=sinbn1
∴ ∣ b n ∣ = ∣ sin ⁡ b n − 1 ∣ ≤ ∣ b n − 1 ∣ \therefore\left|b_{n}\right|=\left|\sin b_{n-1}\right| \leq\left|b_{n-1}\right| bn=sinbn1bn1
∴ lim ⁡ n → ∞ b n = c \therefore \quad \lim _{n \rightarrow \infty} b_{n}=c limnbn=c
∴ c = sin ⁡ c \therefore c=\sin c c=sinc c = 0 c=0 c=0
∴ lim ⁡ n → ∞ a n = 1 \therefore \lim _{n \rightarrow \infty} a_{n}=1 limnan=1
∴ lim ⁡ n → ∞ ∑ k = 1 n a k n = lim ⁡ n → ∞ a n + 1 n + 1 − n = 1 \therefore \lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k}}{n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n+1-n}=1 \quad limnnk=1nak=limnn+1nan+1=1 (施笃兹定理)

3, 设 b n = ∑ k = 0 n 1 c n k 求 n → ∞ l i m b n { 设b }_{n}=\sum_{k=0}^{n} \frac{1}{c_{n}^{k}} { 求 }_{n \rightarrow \infty}^{l i m} b_{n} bn=k=0ncnk1nlimbn
解 :   b n = ∑ k = 0 n k ! ( n − k ) ! n ! { 解:\,} b_{n}=\frac{\sum_{k=0}^{n} k !(n-k)!}{n !} :bn=n!k=0nk!(nk)!
∴ ( n + 2 ) b n = ∑ k = 0 n k ! ( n − k ) ! ( n + 1 − k + k + 1 ) n ! = ∑ k = 0 n k ! ( n + 1 − k ) ! + ∑ k = 0 n ( k + 1 ) ! ( n − k ) ! n ! = ∑ k = 0 n k ! ( n + 1 − k ) ! + ∑ k = 0 n + 1 k ! ( n + 1 − k ) ! − ( n + 1 ) ! n ! = 2 ∑ k = 0 n + 1 k ! ( n + 1 − k ) ! − 2 ( n + 1 ) ! n ! = 2 ( n + 1 ) b n + 1 − 2 ( n + 1 ) \therefore(n+2) b_{n}=\frac{\sum_{k=0}^{n} k !(n-k) !(n+1-k+k+1)}{n !} \\ =\frac{\sum_{k=0}^{n} k !(n+1-k) !+\sum_{k=0}^{n} (k+1) !(n-k) !}{n !} \\ =\frac{\sum_{k=0}^{n} k !(n+1-k) !+\sum_{k=0}^{n+1} k !(n+1-k) !-(n+1) !}{n !} \\ =\frac{2 \sum_{k=0}^{n+1} k !(n+1-k) !-2(n+1) !}{n !} \\ =2(n+1) b_{n+1}-2(n+1) (n+2)bn=n!k=0nk!(nk)!(n+1k+k+1)=n!k=0nk!(n+1k)!+k=0n(k+1)!(nk)!=n!k=0nk!(n+1k)!+k=0n+1k!(n+1k)!(n+1)!=n!2k=0n+1k!(n+1k)!2(n+1)!=2(n+1)bn+12(n+1)
即 b n + 1 = ( n + 2 ) b n 2 ( n + 1 ) + 1 { 即 } b_{n+1}=\frac{(n+2) b_{n}}{2(n+1)}+1 bn+1=2(n+1)(n+2)bn+1
若 2 < b n < 2 + 6 n , n > 2  则  b n + 1 < n + 2 2 ( n + 1 ) ( 2 + 6 n ) + 1 = 2 + 1 n + 1 + 3 ( n + 2 ) n ( n + 1 ) ≤ 2 + 1 n + 1 + 5 n + 1 = 2 + 6 n + 1 b n + 1 > n + 2 n + 1 + 1 > 2 则 2 < b n + 1 < 6 n + 1 因 2 < b 3 = 8 3 < 4 , 故 2 < b n < 2 + 6 n ( n > 2 ) 成 立 ∴ lim ⁡ n → ∞ b n = 2 { 若 } 22 \\ \text { 则 } b_{n+1}<\frac{n+2}{2(n+1)}\left(2+\frac{6}{n}\right)+1 \\ =2+\frac{1}{n+1}+\frac{3(n+2)}{n(n+1)} \leq 2+\frac{1}{n+1}+\frac{5}{n+1}=2+\frac{6}{n+1} \\ b_{n+1}>\frac{n+2}{n+1}+1>2 \\ 则22)成立 \\ \therefore \lim _{n \rightarrow \infty} b_{n}=2 2<bn<2+n6,n>2  bn+1<2(n+1)n+2(2+n6)+1=2+n+11+n(n+1)3(n+2)2+n+11+n+15=2+n+16bn+1>n+1n+2+1>22<bn+1<n+162<b3=38<42<bn<2+n6n>2limnbn=2

4,设 a 1 = 1 2   ,   a n = 1 + a n − 1 2   ,   求 极 限 lim ⁡ n → ∞ a 1 a 2 ⋯ a n a_{1}=\sqrt{\frac{1}{2}} \,,\,a_{n}=\sqrt{\frac{1+a_{n-1}}{2}} \,,\,求极限 \lim _{n \rightarrow \infty} a_{1} a_{2} \cdots a_{n} a1=21 ,an=21+an1 ,limna1a2an
解: a n − 1 = 2 a n 2 − 1 a_{n-1}=2 a_{n}^{2}-1 an1=2an21 类似 cos ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 \cos 2 \theta=2 \cos^2 \theta-1 cos2θ=2cos2θ1
a 1 = 2 2 = cos ⁡ π 4 a_{1}=\frac{\sqrt{2}}{2}=\cos \frac{\pi}{4} a1=22 =cos4π
a n − 1 = cos ⁡ π 2 n a_{n-1}=\cos \frac{\pi}{2^{n}} an1=cos2nπ a n = cos ⁡ π 2 n + 1 a_{n}=\cos \frac{\pi}{2^{n+1}} an=cos2n+1π
∴ ∀ n , 有 a n = cos ⁡ π 2 n + 1 \therefore \forall{n}, 有a_{n}=\cos \frac{\pi}{2^{n+1}} n,an=cos2n+1π
∴ a 1 a 2 ⋯ a n = cos ⁡ π 2 2 cos ⁡ π 2 3 ⋯ cos ⁡ π 2 n + 1 = 1 2 n sin ⁡ π 2 n + 1 \therefore a_{1} a_{2} \cdots a_{n}=\cos \frac{\pi}{2^{2}} \cos \frac{\pi}{2^{3}} \cdots \cos \frac{\pi}{2^{n+1}}=\frac{1}{2^{n} \sin \frac{\pi}{2^{n+1}}} a1a2an=cos22πcos23πcos2n+1π=2nsin2n+1π1
∴ lim ⁡ n → ∞ a 1 a 2 ⋯ a n = 2 π \therefore \lim _{n \rightarrow \infty} a_{1} a_{2} \cdots a_{n}=\frac{2}{\pi} limna1a2an=π2

5, a 1 > 0 , b 1 > 0 , c 1 > 0 , a 1 + b 1 + c 1 = 1 , a n + 1 = a n 2 + 2 b n c n , b n + 1 = b n 2 + 2 a n c n , c n + 1 = c n 2 + 2 a n b n ,  证明  lim ⁡ n → ∞ a n  存在并求它   解:  a n + 1 + b n + 1 + c n + 1 = ( a n + b n + c n ) 2 = 1  方法1  (  我的方法)  a n + 1 2 + b n + 1 2 + c n + 1 2 = ∑ a n 4 + 4 a n b n c n ∑ a n + 4 ∑ a n 2 b n 2 = ( a n 2 + b n 2 + c n ) 2 + 2 ( ∑ a n 2 b n 2 + 2 a n b n c n ∑ a n ) = ( a n 2 + b n 2 + c n 2 ) 2 + 2 ( a n b n + b n c n + c n a n ) 2  设  S n = a n 2 + b n 2 + c n 2  则  1 3 ≤ S n < a n + b n + c n = 1 ∴ S n + 1 = S n 2 + 2 ( 1 − S n 2 ) 2 = 3 2 S n 2 − S n + 1 2 = S n + 1 2 ( S n − 1 ) ( 3 S n − 1 ) < S n a_{1}>0, b_{1}>0, c_{1}>0, a_{1}+b_{1}+c_{1}=1, a_{n+1}=a_{n}^{2}+2 b_{n} c_{n}, b_{n+1}=b_{n}^{2}+2 a_{n} c_{n}, c_{n+1}=c_{n}^{2}+2 a_{n} b_{n}, \quad \text { 证明 } \lim _{n \rightarrow \infty} a_{n} \text { 存在并求它 }\\ \text { 解: } a_{n+1}+b_{n+1}+c_{n+1}=\left(a_{n}+b_{n}+c_{n}\right)^{2}=1\\ \text { 方法1 }\left(\right.\text { 我的方法) }\\ \quad a_{n+1}{ }^{2}+b_{n+1}{ }^{2}+c_{n+1}{ }^{2}=\sum a_{n}{ }^{4}+4 a_{n} b_{n} c_{n} \sum a_{n}+4 \sum a_{n}{ }^{2} b_{n}{ }^{2}\\ =\left(a_{n}^{2}+b_{n}^{2}+c_{n}\right)^{2}+2\left(\sum a_{n}^{2} b_{n}^{2}+2 a_{n} b_{n} c_{n} \sum a_{n}\right)\\ =\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}\right)^{2}+2\left(a_{n} b_{n}+b_{n} c_{n}+c_{n} a_{n}\right)^{2}\\ \text { 设 } S_{n}=a_{n}^{2}+b_{n}^{2}+c_{n}^{2} \text { 则 } \frac{1}{3} \leq S_{n}a1>0,b1>0,c1>0,a1+b1+c1=1,an+1=an2+2bncn,bn+1=bn2+2ancn,cn+1=cn2+2anbn, 证明 limnan 存在并求它  an+1+bn+1+cn+1=(an+bn+cn)2=1 方法( 我的方法an+12+bn+12+cn+12=an4+4anbncnan+4an2bn2=(an2+bn2+cn)2+2(an2bn2+2anbncnan)=(an2+bn2+cn2)2+2(anbn+bncn+cnan)2  Sn=an2+bn2+cn2  31Sn<an+bn+cn=1Sn+1=Sn2+2(21Sn)2=23Sn2Sn+21=Sn+21(Sn1)(3Sn1)<Sn
∴ lim ⁡ n → ∞ S n  存在, 设为  c ( 1 3 ≤ c < 1 )  则  c = 3 2 c 2 − c + 1 2  即  c = 1 3 ∴ lim ⁡ n → ∞ a n 2 + b n 2 + c n 2 = 1 3  由于柯西不等式,  lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = lim ⁡ n → ∞ c n = 1 3  方法  2  (书上的方法)   (1)设  M n = max ⁡ { a n , b n , c n } , m n = min ⁡ { a n , b n , c n }  若  a n ≥ b n ≥ c n ,  则  M n = a n , m n = c n \therefore \lim _{n \rightarrow \infty} S_{n} \text { 存在, 设为 } c\left(\frac{1}{3} \leq c<1\right)\\ \text { 则 } c=\frac{3}{2} c^{2}-c+\frac{1}{2} \text { 即 } c=\frac{1}{3}\\ \therefore \lim _{n \rightarrow \infty} a_{n}^{2}+b_{n}^{2}+c_{n}^{2}=\frac{1}{3}\\ \text { 由于柯西不等式, } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=\frac{1}{3}\\ \text { 方法 } 2 \text { (书上的方法) }\\ \text { (1)设 } M_{n}=\max \left\{a_{n}, b_{n}, c_{n}\right\}, m_{n}=\min \left\{a_{n}, b_{n}, c_{n}\right\}\\ \text { 若 } a_{n} \geq b_{n} \geq c_{n}, \text { 则 } M_{n}=a_{n}, \quad m_{n}=c_{n} limnSn 存在设为 c(31c<1)  c=23c2c+21  c=31limnan2+bn2+cn2=31 由于柯西不等式limnan=limnbn=limncn=31 方法 2 (书上的方法 (1) Mn=max{ an,bn,cn},mn=min{ an,bn,cn}  anbncn,  Mn=an,mn=cn
a n + 1 = a n 2 + 2 b n c n < a n 2 + a n b n + a n c n = a n = M n b n + 1 = b n 2 + 2 a n c n < a n 2 + a n b n + a n c n = a n = M n c n + 1 = c n 2 + 2 a n c n < a n c n + a n b n + a n 2 = a n = M n ∴ M n + 1 = max ⁡ { a n + 1 , b n + 1 , c n + 1 } < M n  同理  m n + 1 > m n ( 2 ) M n + 1 − m n + 1 ≤ ( M n − m n ) 2  (证明和上面差不多, 略)  ∴ lim ⁡ n → ∞ M n = lim ⁡ n → ∞ m n  即  lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = lim ⁡ n → ∞ c n = 1 3 a_{n+1}=a_{n}^{2}+2 b_{n} c_{n}m_{n}\\ (2)M_{n+1}-m_{n+1} \leq\left(M_{n}-m_{n}\right)^{2} \quad \text { (证明和上面差不多, 略) }\\ \therefore \lim _{n \rightarrow \infty} M_{n}=\lim _{n \rightarrow \infty} m_{n}\\ \text { 即 } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=\frac{1}{3} an+1=an2+2bncn<an2+anbn+ancn=an=Mnbn+1=bn2+2ancn<an2+anbn+ancn=an=Mncn+1=cn2+2ancn<ancn+anbn+an2=an=MnMn+1=max{ an+1,bn+1,cn+1}<Mn 同理 mn+1>mn(2)Mn+1mn+1(Mnmn)2 (证明和上面差不多limnMn=limnmn  limnan=limnbn=limncn=31

6.求 y = a r c t a n   x y=arctan\,x y=arctanx x = 0 x=0 x=0 处的 n n n 阶导数
解: ( 1 + x 2 ) y ′ = 1 \left(1+x^{2}\right) y'=1 (1+x2)y=1
由莱布伦茨公式, n ( n − 1 ) y ( n − 1 ) + 2 n x y ( n ) + ( 1 + x 2 ) y ( n + 1 ) = 0 n(n-1) y^{(n-1)}+2n x y^{(n)}+\left(1+x^{2}\right) y^{(n+1)}=0 n(n1)y(n1)+2nxy(n)+(1+x2)y(n+1)=0
∴ \therefore x = 0 x=0 x=0 处, y ( n + 1 ) = − n ( n − 1 ) y ( n − 1 ) y^{(n+1)}=-n(n-1) y^{(n-1)} y(n+1)=n(n1)y(n1)
∴ \therefore n n n 为偶数时, y ( n ) ( 0 ) = 0 \quad y^{(n)}{ }_{(0)}=0 y(n)(0)=0
n n n 为奇数时, y ( n ) ( 0 ) = ( − 1 ) n − 1 2 ⋅ ( n − 1 ) ! y^{(n)}{ }_{(0)}=(-1)^{\frac{n-1}{2}} \cdot(n-1) ! y(n)(0)=(1)2n1(n1)!

你可能感兴趣的:(new)