opencv+face_recognition+python实现换脸(face swap)操作4———基于Delaunay 三角剖分的代码实现

import cv2
import numpy as np
import pandas as pd
import os
from matplotlib import pyplot as plt
import face_recognition
img=cv2.imread("ym.jpg")
img2=cv2.imread("222.jpg")#目标图像
def ladmasktuple(img):
    faces_loaction=face_recognition.face_locations(img,number_of_times_to_upsample = 0,model ='cnn')
    face_feature=face_recognition.face_landmarks(img,face_locations=faces_loaction)
    face_feature1=pd.DataFrame(face_feature)
    def listexpend(X):
        a=[]
        for i in list(X):
            a.extend(i)      
        return a
    h1=[]
    for j in range (0,9):
        h=listexpend(face_feature1.iloc[:,j])
        h1+=h
    return h1
landmarks_points=ladmasktuple(img)
#points1
landmarks_points2=ladmasktuple(img2)
def extract_index_nparray(nparray):
    index = None
    for num in nparray[0]:
        index = num
        break
    return index
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
mask = np.zeros_like(img_gray)
points = np.array(landmarks_points, np.int32)
convexhull = cv2.convexHull(points)
points2 = np.array(landmarks_points2, np.int32)
convexhull2 = cv2.convexHull(points2)
    # cv2.polylines(img, [convexhull], True, (255, 0, 0), 3)
cv2.fillConvexPoly(mask, convexhull, 255)

face_image_1 = cv2.bitwise_and(img, img, mask=mask)

    # Delaunay triangulation
rect = cv2.boundingRect(convexhull)
subdiv = cv2.Subdiv2D(rect)
subdiv.insert(landmarks_points)
triangles = subdiv.getTriangleList()
triangles = np.array(triangles, dtype=np.int32)

indexes_triangles = []
for t in triangles:
    pt1 = (t[0], t[1])
    pt2 = (t[2], t[3])
    pt3 = (t[4], t[5])


    index_pt1 = np.where((points == pt1).all(axis=1))
    index_pt1 = extract_index_nparray(index_pt1)

    index_pt2 = np.where((points == pt2).all(axis=1))
    index_pt2 = extract_index_nparray(index_pt2)

    index_pt3 = np.where((points == pt3).all(axis=1))
    index_pt3 = extract_index_nparray(index_pt3)

    if index_pt1 is not None and index_pt2 is not None and index_pt3 is not None:
        triangle = [index_pt1, index_pt2, index_pt3]
        indexes_triangles.append(triangle)
#img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
height, width, channels = img2.shape
img2_new_face = np.zeros((height, width, channels), np.uint8)
lines_space_mask = np.zeros_like(img_gray)
lines_space_new_face = np.zeros_like(img2)
for triangle_index in indexes_triangles:
    # Triangulation of the first face
    tr1_pt1 = landmarks_points[triangle_index[0]]
    tr1_pt2 = landmarks_points[triangle_index[1]]
    tr1_pt3 = landmarks_points[triangle_index[2]]
    triangle1 = np.array([tr1_pt1, tr1_pt2, tr1_pt3], np.int32)


    rect1 = cv2.boundingRect(triangle1)
    (x, y, w, h) = rect1
    cropped_triangle = img[y: y + h, x: x + w]
    cropped_tr1_mask = np.zeros((h, w), np.uint8)


    points = np.array([[tr1_pt1[0] - x, tr1_pt1[1] - y],
                       [tr1_pt2[0] - x, tr1_pt2[1] - y],
                       [tr1_pt3[0] - x, tr1_pt3[1] - y]], np.int32)

    cv2.fillConvexPoly(cropped_tr1_mask, points, 255)

    # Lines space
    cv2.line(lines_space_mask, tr1_pt1, tr1_pt2, 255)
    cv2.line(lines_space_mask, tr1_pt2, tr1_pt3, 255)
    cv2.line(lines_space_mask, tr1_pt1, tr1_pt3, 255)
    lines_space = cv2.bitwise_and(img, img, mask=lines_space_mask)

    # Triangulation of second face
    tr2_pt1 = landmarks_points2[triangle_index[0]]
    tr2_pt2 = landmarks_points2[triangle_index[1]]
    tr2_pt3 = landmarks_points2[triangle_index[2]]
    triangle2 = np.array([tr2_pt1, tr2_pt2, tr2_pt3], np.int32)


    rect2 = cv2.boundingRect(triangle2)
    (x, y, w, h) = rect2

    cropped_tr2_mask = np.zeros((h, w), np.uint8)

    points2 = np.array([[tr2_pt1[0] - x, tr2_pt1[1] - y],
                        [tr2_pt2[0] - x, tr2_pt2[1] - y],
                        [tr2_pt3[0] - x, tr2_pt3[1] - y]], np.int32)

    cv2.fillConvexPoly(cropped_tr2_mask, points2, 255)

    # Warp triangles
    points = np.float32(points)
    points2 = np.float32(points2)
    M = cv2.getAffineTransform(points, points2)
    warped_triangle = cv2.warpAffine(cropped_triangle, M, (w, h))
    warped_triangle = cv2.bitwise_and(warped_triangle, warped_triangle, mask=cropped_tr2_mask)

    # Reconstructing destination face
    img2_new_face_rect_area = img2_new_face[y: y + h, x: x + w]
    img2_new_face_rect_area_gray = cv2.cvtColor(img2_new_face_rect_area, cv2.COLOR_BGR2GRAY)
    _, mask_triangles_designed = cv2.threshold(img2_new_face_rect_area_gray, 1, 255, cv2.THRESH_BINARY_INV)
    warped_triangle = cv2.bitwise_and(warped_triangle, warped_triangle, mask=mask_triangles_designed)

    img2_new_face_rect_area = cv2.add(img2_new_face_rect_area, warped_triangle)
    img2_new_face[y: y + h, x: x + w] = img2_new_face_rect_area
img2_face_mask = np.zeros_like(img2_gray,dtype='uint8')
img2_head_mask = cv2.fillConvexPoly(img2_face_mask, convexhull2,255)
#cv2.fillPoly(img=img2_face_mask ,pts=convexhull2,color=(255,255,255))
img2_face_mask = cv2.bitwise_not(img2_head_mask)

#img2_face_mask=np.uint8(img2_face_mask)
img2_head_noface = cv2.bitwise_and(img2, img2, mask=img2_face_mask)
result = cv2.add(img2_head_noface, img2_new_face)

(x, y, w, h) = cv2.boundingRect(convexhull2)
center_face2 = (int((x + x + w) / 2), int((y + y + h) / 2))

seamlessclone = cv2.seamlessClone(result, img2, img2_head_mask, center_face2, cv2.NORMAL_CLONE)
plt.imshow(cv2.cvtColor(seamlessclone, cv2.COLOR_BGR2RGB))
plt.xticks([]),plt.yticks([])  #to hide tick values on X and Y axis
plt.show()

opencv+face_recognition+python实现换脸(face swap)操作4———基于Delaunay 三角剖分的代码实现_第1张图片

你可能感兴趣的:(图像识别,opencv,python,numpy,cv)