Pandas实现列表分列与字典分列的三个实例

大家好,我是小小明,本人非常擅长解决各类复杂数据处理的逻辑,包括各类结构化与非结构化数据互转,字符串解析匹配等等。

至今已经帮助很多数据从业者解决工作中的实际问题,如果你在数据处理上遇到什么困难,欢迎与我交流。

上次我分享了一道基础题N种解题思路,其中一种读取数据的过程涉及到列表分列,详见:https://blog.csdn.net/as604049322/article/details/112760894

这次我将分享三个实际案例,让大家看看列表分列的一些实际应用。

首先,我们先导包并设置Pandas显示参数:

import pandas as pd
pd.set_option("display.max_colwidth", 100)

正则提取并分列

需求:

Pandas实现列表分列与字典分列的三个实例_第1张图片

读取数据:

df = pd.read_excel("正则提取与分列.xlsm", usecols=[0])
df.head()

结果:

补回原因
0 核实断网时间;20190128至20190217,20190223至20190311,20190407至20190622号无上网记录,协商补回3个月21天
1 核实断网时间;2019.06.20到2019.07.22无上网记录,断网1个月3天
2 核实断网时间从20190130到20190322,20190414到20190719无上网记录,断网5个月7天
3 核实断网时间:20190312到20190802号无上网记录,断网4个月20天
4 核实断网时间:2019.03.29到2019.06.29无上网记录,协商补回3个月

实现代码:

result = df.copy()
result["tmp"] = result["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
result = result.agg({
     "补回原因": lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1)
result.head()

结果:

补回原因 0 1 2
0 核实断网时间;20190128至20190217,20190223至20190311,20190407至20190622号无上网记录,协商补回3个月21天 20190128至20190217 20190223至20190311 20190407至20190622
1 核实断网时间;2019.06.20到2019.07.22无上网记录,断网1个月3天 2019.06.20到2019.07.22 NaN NaN
2 核实断网时间从20190130到20190322,20190414到20190719无上网记录,断网5个月7天 20190130到20190322 20190414到20190719 NaN
3 核实断网时间:20190312到20190802号无上网记录,断网4个月20天 20190312到20190802 NaN NaN
4 核实断网时间:2019.03.29到2019.06.29无上网记录,协商补回3个月 2019.03.29到2019.06.29 NaN NaN

分步解析:

df["tmp"] = df["补回原因"].str.findall("([\d.]+[到至][\d.]+)")
df.head(5)

结果:

补回原因 tmp
0 核实断网时间;20190128至20190217,20190223至20190311,20190407至20190622号无上网记录,协商补回3个月21天 [20190128至20190217, 20190223至20190311, 20190407至20190622]
1 核实断网时间;2019.06.20到2019.07.22无上网记录,断网1个月3天 [2019.06.20到2019.07.22]
2 核实断网时间从20190130到20190322,20190414到20190719无上网记录,断网5个月7天 [20190130到20190322, 20190414到20190719]
3 核实断网时间:20190312到20190802号无上网记录,断网4个月20天 [20190312到20190802]
4 核实断网时间:2019.03.29到2019.06.29无上网记录,协商补回3个月 [2019.03.29到2019.06.29]

这步使用正则提取出每个日期字符串,[\d.]+表示连续的数字或.用于匹配时间字符串,两个时间之间的连接字符可能是到或至。

然后我使用agg函数直接对Datafream分列:

df.agg({
     "补回原因": lambda x: x, "tmp": pd.Series})

结果:

Pandas实现列表分列与字典分列的三个实例_第2张图片

由于列索引多了一级,所以需要删除:

df.agg({
     "补回原因": lambda x: x, "tmp": pd.Series}).droplevel(0, axis=1).head()

结果:

补回原因 0 1 2
0 核实断网时间;20190128至20190217,20190223至20190311,20190407至20190622号无上网记录,协商补回3个月21天 20190128至20190217 20190223至20190311 20190407至20190622
1 核实断网时间;2019.06.20到2019.07.22无上网记录,断网1个月3天 2019.06.20到2019.07.22 NaN NaN
2 核实断网时间从20190130到20190322,20190414到20190719无上网记录,断网5个月7天 20190130到20190322 20190414到20190719 NaN
3 核实断网时间:20190312到20190802号无上网记录,断网4个月20天 20190312到20190802 NaN NaN
4 核实断网时间:2019.03.29到2019.06.29无上网记录,协商补回3个月 2019.03.29到2019.06.29 NaN NaN

droplevel(0, axis=1)用于删除多级索引指定的级别,axis=0可以删除行索引,axis=1则可以删除列索引,第一参数表示删除级别0。当然如果列索引存在名称时还可以传入名称字符串,可参考官网文档:

df = pd.DataFrame([
...     [1, 2, 3, 4],
...     [5, 6, 7, 8],
...     [9, 10, 11, 12]
... ]).set_index([0, 1]).rename_axis(['a', 'b'])
>>> df.columns = pd.MultiIndex.from_tuples([
...    ('c', 'e'), ('d', 'f')
... ], names=['level_1', 'level_2'])
>>> df
level_1   c   d
level_2   e   f
a b
1 2      3   4
5 6      7   8
9 10    11  12
>>> df.droplevel('a')
level_1   c   d
level_2   e   f
b
2        3   4
6        7   8
10      11  12
>>> df.droplevel('level2', axis=1)
level_1   c   d
a b
1 2      3   4
5 6      7   8
9 10    11  12

分组聚合并分列

需求:

Pandas实现列表分列与字典分列的三个实例_第3张图片

首先,读取数据:

df = pd.read_excel("分组聚合并分列.xlsx")
df

结果:

Pandas实现列表分列与字典分列的三个实例_第4张图片

实现代码:

(
    df.groupby("姓名")["得分"]
    .apply(list)
    .apply(pd.Series)
    .fillna("")
    .rename(columns=lambda x: f"得分{x+1}")
    .reset_index()
    .astype({
     "得分1":"int8"})
)

结果:

Pandas实现列表分列与字典分列的三个实例_第5张图片

分布解析:

首先将每个姓名的得分聚合成列表,并最终返回一个Series:

df.groupby("姓名")["得分"].apply(list)

结果:

姓名
孙四娘          [7, 28]
看见星光    [88, 28, 23]
看见月光    [69, 10, 87]
老祝          [51, 29]
马青梅             [99]
Name: 得分, dtype: object

当然,这步的标准写法应该是使用Series的内部方法:

df.groupby("姓名")["得分"].apply(lambda x:x.to_list())

使用Series内部方法的性能比python列表方法转换快一些。

作为一个Series就可以通过将每个列表元素转换为Series,从而最终返回一个分列的Datafream:

_.apply(pd.Series)

结果:

Pandas实现列表分列与字典分列的三个实例_第6张图片

注意:_在ipython表示上一个输出返回的结果,jupyter还额外支持_num表示num编号单元格的输出。

_.fillna("")

结果:

Pandas实现列表分列与字典分列的三个实例_第7张图片

fillna表示填充缺失值,传入""表示将缺失值填充为空字符串。

下面重命名一下列名:

_.rename(columns=lambda x: f"得分{x+1}")

结果:

Pandas实现列表分列与字典分列的三个实例_第8张图片

然后还原索引:

_.reset_index()

结果:

Pandas实现列表分列与字典分列的三个实例_第9张图片

发现结果中有一列,不是整数,所以还原成整数(总分100分,8位足够存储):

_.astype({
     "得分1":"int8"})

结果:

Pandas实现列表分列与字典分列的三个实例_第10张图片

解析json字符串并字典分列

需求:

Pandas实现列表分列与字典分列的三个实例_第11张图片

首先读取数据:

df = pd.read_excel("字典分列.xlsx")
df.head()

结果:

Pandas实现列表分列与字典分列的三个实例_第12张图片

处理代码:

result = df.features.apply(eval).apply(pd.Series)
result["counts"] = df.counts
result

结果:

储存条件 品牌 推荐理由 品种 食用方式 是否进口 特色服务 是否有机 counts
0 常温 NaN NaN NaN NaN NaN NaN NaN 33
1 冷藏 NaN NaN NaN NaN NaN NaN NaN 24
2 常温 禾煜 NaN NaN NaN NaN NaN NaN 22
3 常温 妙洁 NaN NaN NaN NaN NaN NaN 16
4 冷冻 NaN NaN NaN NaN NaN NaN NaN 14
2083 常温 乐事 够薄够脆 NaN NaN NaN NaN NaN 1
2084 冷藏 NaN 生态种植 黄瓜 NaN NaN NaN 有机 1
2085 冷藏 NaN 腥味较淡 鲫鱼 NaN NaN 免费宰杀 NaN 1
2086 冷藏 NaN 甜脆可口 佛手瓜 NaN NaN NaN NaN 1
2087 冷藏 叮咚日日鲜 全程可追溯 猪小排 NaN NaN NaN NaN 1

2088 rows × 9 columns

浅析:

df.features.apply(eval)用于将features列的每个json字符串解析为字典对象。

**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。

result["counts"] = df.counts则将原始数据的counts列添加到结果列中。

总结

经过三个案例的练习,大家是否已经对Pandas的分列操作比较熟悉呢?

欢迎大家在下方评论区留言你的看法。

你可能感兴趣的:(数据处理,python,python数据分析)