20级爪哇程序设计新生赛1.0题解

20级爪哇程序设计新生赛题解

  • 20级爪哇程序设计新生赛1.0(正式赛)
      • A.The Tree Of LittleZhua(思维或者线段树)(两种解法)
      • B.小爪的破译
      • C.小爪的博弈(巴什博弈)
      • D.小爪的乒乓球比赛(暴力或者数学计算)
      • E.小爪玩石头(区间DP)
      • F.小爪做安卓组考核(栈)
      • G.小爪的统计数据
      • H.小爪跳台阶
      • I.小爪的除数
      • J.小爪的数学题(前缀和)
      • K.小爪的试炼
      • L.小爪的荣耀(模拟)
  • 20级爪哇程序设计新生赛1.0(热身赛)
      • A.小爪学编程(水题)(热身赛)
      • B.小爪的座驾(热身赛)
      • C.小爪的AC(最长上升子序列)(热身赛)
      • D.小爪找规律(热身赛)

20级爪哇程序设计新生赛1.0(正式赛)

A.The Tree Of LittleZhua(思维或者线段树)(两种解法)

思维解题: 这题数据出问题了,本来这种解法不应该过的。

#include
#include
#include
#include
#include
#include

#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INT_MAX 0x3f3f3f3f
#define INT_MIN 0xc0c0c0c0
using namespace std;
const int N = 200000;
int arr[N];
signed main()
{
     
	int n, m;
	scanf("%lld%lld", &n, &m);
	for(int i = 0; i < n; i++) scanf("%lld", &arr[i]);
	
	for(int i = 0; i < m; i++) {
     
		char ch;
		int a, b;
		getchar();
		scanf("%c%lld%lld", &ch, &a, &b);
		if (ch == 'Q') {
     
			int maxx = 0;
			for (int j = a - 1; j < b; j++) {
     
				if(arr[j] > maxx) maxx = arr[j];
			}
			printf("%lld\n", maxx);
		} else arr[a - 1] = b;
	}
	return 0;
}

正宗的解法在这里:线段树解法

线段树相关内容 Click here~~

#include
#include
#include
#include
#include
#include
#include

#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
//#define int ll
#define INF 0x3f3f3f3f
using namespace std;
int read()
{
     
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';    ch = getchar(); }
	return s * w;
}
const int N = 200010;

int m, p;//m操作次数,p取模的值是多少
struct Node{
     
    int l, r;//左端点,右端点
    int val;//区间[l, r]的最大值
}tr[N << 2];
int num[N];

//由子节点的信息来计算父节点的信息
void pushup(int cur){
     
    tr[cur].val = max(tr[cur << 1].val, tr[cur << 1 | 1].val);
}

//cur代表当前节点,
void build(int cur, int l, int r){
     
    //当前结点的左右儿子分别是tr[cur].l   tr[cur].r
    tr[cur] = {
     l, r};
    //如果已经是叶结点return
    if(l == r) {
     
        tr[cur].val = num[r];
        return;
    }
       
    //否则求一下当前区间的中点
    int mid = l + r >> 1;
    //递归建立左边区间
    build(cur << 1, l, mid);
    //递归建立右边区间
    build(cur << 1 | 1, mid + 1, r);
    pushup(cur);
}

//[l, r]查询区间   cur代表当前线段树里面的端点。
int query(int cur, int l, int r) {
     
    
    //①情况[TL,TR] ⊂ [L,R]
    //树中节点,已经被完全包含在[l, r]中了。
    if (tr[cur].l >= l && tr[cur].r <= r) {
     
        return tr[cur].val;
    }
    
    int mid = tr[cur].l + tr[cur].r >> 1;
    int val = 0;
    
    //判断与左边有没有交集
    if (l <= mid) {
     
        val = query(cur << 1, l, r);
    }
    
    //这里为什么是 r > mid,因为划分的区间是[l, mid][mid + 1, r],所以要用>而不能=
    //判断与右边有没有交集
    if (r > mid) {
     
        //为什么要取max?
        //因为上面先比较左值,所以左值可能有一个最大值,要跟再右边区间查询的值进行比较,取最大的。
        val = max(val, query(cur << 1 | 1, l, r));
    }
    //返回结果
    return val;
}

//cur代表当前线段树里面的端点。tar代表要修改的位置
void modify(int cur, int tar, int val) {
     
    //如果当前节点就是叶节点,那么直接修改就可以了
    if (tr[cur].l == tar && tr[cur].r == tar) {
     
        tr[cur].val = val;
        return;
    }
    int mid = tr[cur].l + tr[cur].r >> 1;
    if (tar <= mid) {
     
        modify (cur << 1, tar, val);
    } else {
     
        modify (cur << 1 | 1, tar, val);
    }
    //递归完之后,要更新到父节点。
    //pushup就是更新父节点的信息
    pushup(cur);
}

int main()
{
     
    int n,m;
    while(~scanf("%d%d",&n,&m)){
     
        memset(num, 0, sizeof num);
        memset(tr, 0, sizeof tr);
        for (int i = 1;i <= n; ++i) {
     
            scanf("%d", &num[i]);
        }
        build(1, 1, n);
        for (int i = 0; i < m; ++i) {
     
            char ch;
            int a, b;
            getchar();//每一次都要getchar();放在循环里面的第一行。
            scanf("%c%d%d",&ch,&a,&b);

            if (ch == 'Q') {
     
                printf("%d\n", query(1, a, b));
            }
            else{
     
                modify(1, a, b);
            }
        }
    }
    return 0;
}

B.小爪的破译

字符串b:

 a        b        b       a       c        c
b[1]     b[2]     b[3]    b[4]    b[5]     b[6]

字符串a:

 a      b      a     c
a[1]  a[2]   a[3]  a[4]

已知字符串b即已知字符串b的长度
通过观察得出规律:
两字符串之间的长度规律:b.length() = 2 × (a.length() - 1)
两字符串之间的数值规律:a[i] = b[2 × i - 1]

#include
#include
#include
using namespace std;
int main()
{
     
	int t;
	scanf("%d", &t);
	getchar();
	while (t--) {
     
		char b[105];
		scanf("%s", b);
		for (int i = 0; i < strlen(b) - 1; i += 2) {
     
			printf("%c", b[i]);
		}
		printf("%c\n", b[strlen(b) - 1]);
	}
	return 0;
}

C.小爪的博弈(巴什博弈)

这题是博弈论

#include
#include
#include
#include
#include
#include

#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INT_MAX 0x3f3f3f3f
#define INT_MIN 0xc0c0c0c0
using namespace std;
int read()
{
     
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';    ch = getchar(); }
	return s * w;
}
signed main()
{
     
	int t = read();
	while (t--) {
     
		int n = read();
		int m = read();
		if (n % (m + 1)) printf("first\n");
		else printf("second\n");
	}
	return 0;
}

D.小爪的乒乓球比赛(暴力或者数学计算)

暴力解法:

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
signed main()
{
     
	int t = read();
	while (t--) {
     
		int n = read();
		int cnt = 0;
		while (n > 1) {
     
			if (n % 2 == 0) {
     
			    n /= 2;
			    cnt += n;
			} else {
     
			    n /= 2;
			    cnt += n;
			    n++;
			}
		}
		printf("%lld\n", cnt);
	}
	return 0;
}

数学解法:输出n-1就可以了
原理解析:
n支队伍参加淘汰赛决出获胜队伍需要场次是:n - 1
那么有n支队伍,要决出获胜队伍,那么意思就是要淘汰 n - 1支队伍,一场比赛淘汰一支队伍,则需要n - 1场比赛。

#include
#include
int main() {
     
	int t;
	scanf("%d", &t);
	while (t--) {
     
		int n;
    	scanf("%d", &n);
    	printf("%d\n", n - 1);
	}
    return 0;
}

E.小爪玩石头(区间DP)

区间DP的原理及例题 Click here ~

#include
#include
#include
#include
using namespace std;
int read()
{
     
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
	return s * w;
}
const int N = 410;//因为要开双链
const int inf = 0x3f3f3f3f;
int sum[N], val[N];//sum[N]表示合并付出的代价总和,val[N]表示每个点的值。
int dpmin[N][N], dpmax[N][N];//得分总和最小,得分总和最大
int main()
{
     
    int n = read();
    for (int i = 1; i <= n; ++i) {
     
        val[i] = read();
        val[i + n] = val[i];//化环形为链形
    }
    
    for (int i = 1; i <= n + n; ++i) {
     
        sum[i] = sum[i - 1] + val[i];//前缀和 以便最后求出——最后一步所需要付出的代价
    }
    //初始化
    memset(dpmin, 0x3f, sizeof dpmin);
    memset(dpmax, -0x3f, sizeof dpmax);
    
    //枚举链的长度
    for (int len = 1; len <= n; ++len) {
     
        //枚举区间左端点
        for (int l = 1; l + len - 1 <= n + n; ++l) {
     
            int r = l + len - 1;//区间右端点
            //如果区间长度为1,则无需付出任何代价。
            if (len == 1) dpmin[l][r] = dpmax[l][r] = 0;
            else {
     
                //枚举分界线
                for (int k = l; k < r; ++k) {
     
                    dpmin[l][r] = min(dpmin[l][r], dpmin[l][k] + dpmin[k + 1][r] + sum[r] - sum[l - 1]);
                    dpmax[l][r] = max(dpmax[l][r], dpmax[l][k] + dpmax[k + 1][r] + sum[r] - sum[l - 1]);
                }
            }
        }
    }
    //初始化最大值最小值。
    int maxv = -inf, minv = inf;
    for (int l = 1; l <= n; ++l) {
     
        maxv = max(maxv, dpmax[l][l + n - 1]);
        minv = min(minv, dpmin[l][l + n - 1]);
    }
    //得出结果
    printf("%d\n", minv);
    printf("%d\n", maxv);
    return 0;
}

F.小爪做安卓组考核(栈)

对数字运算进行模拟:
① 如果遇到 ’ + ’ 或 ’ - ',先将相应的数字push入栈(如果是 ’ - ’ 则push数字的相反数)
② 如果遇到优先级大的 ’ * ’ 或 ’ / ’ 先将相应数字与栈顶元素进行运算后将结果push进入
③ 最后将栈中所有元素相加。

#include
#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
signed main()
{
     
    char c, s;
    char s;
    double n;
    //开头特殊处理:0 +'\n'时结束;
    while(~scanf("%lf%c",&n,&c)) {
     
        if(n == 0 && c=='\n') break;
        stack<double>stk;
        double ans=0;
        while(!stk.empty()) stk.pop();
        stk.push(n);
        while(~scanf("%c %lf",&s,&n)) {
     
            if (s == '+') stk.push(n);
            if (s == '-') stk.push(-n);
            if (s == '*') {
     
                double tmp = stk.top() * n;
                stk.pop();
                stk.push(tmp);
            }
            if (s=='/') {
     
                double tmp = stk.top() * 1.0 / n;
                stk.pop();
                stk.push(tmp);
            }
            c = getchar();
            if (c == '\n') break;
        }
        while (!stk.empty()) {
     
            ans += stk.top();
            st.pop();
        }
        printf("%.2lf\n",ans);
    }
    return 0;
}

G.小爪的统计数据

题解:用一个数组a[ ]进行计数,首先初始化a[ ]数组,全部为0
比如说:3 2 3 4 3 2 1, 算出其中最大的数字 maxx = max(maxx, a[i]); max()函数是比较两个数字大小;
如果是C语言的话需要自己写一个max()函数
int max (int n) {
if (a >= b) return a;
else return b;
}
遍历输入的数字然后依次执行
a[3]++;
a[2]++;
a[3]++;
a[4]++;
a[3]++;
a[2]++;
a[1]++;
此时最大的数字为4
然后从最大往最小遍历
for (int i = maxx; i >= 1; --i)
如果a[i] 不为 0,则输出 if (a[i])
注意输出格式。即可

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
const int N = 10010;
int a[N];
signed main() {
     
    int n = read();
    int maxx = 0;
    memset(a, 0, sizeof a);
    for (int i = 1; i <= n; ++i) {
     
        int x = read();
        a[x]++;
        maxx = max(maxx, x);
    }
    for (int i = maxx; i >= 1; --i) {
     
        if (a[i]) printf("%lld-%lld\n", i, a[i]);
    }
    return 0;
}

H.小爪跳台阶

题解:递推
f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n−2) f(n)=f(n1)+f(n2) 记得最后要 %1000000007

#include
#include
const int N = 110;
int f[N];
int main()
{
     
    int n;
  	scanf ("%d", &n);
    if (n == 1) printf("1\n");
    f[1] = 1;
    f[2] = 2;
    for (int i = 3; i <= n; i++) {
     
        f[i] = (f[i - 2] + f[i - 1]) % 1000000007;
    }
  	printf("%d\n", f[n]);
}

I.小爪的除数

题解:要求最少次数,所以自然是先 % 的数字越大,操作数最少
所以依次从 5 到 3 再到 2;
注意数据范围很大要用 long long 定义变量

#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
using namespace std;
int read()
{
     
	int w = 1, s = 0;
	char ch = getchar();
	while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
	while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';    ch = getchar(); }
	return s * w;
}
signed main()
{
     
    int n = read();
	while (n--) {
     
		int x = read(); 
		int ans = 0;
		while (x > 1) {
     
			int flag = 0;
			if (x % 5 == 0) {
     
			    x = x / 5 * 4;
			    flag = 1;
			} else if(x % 3==0) {
     
			     x= x / 3 * 2;
			     flag = 1;
			} else if (x % 2 == 0) {
     
			    x = x / 2;
			    flag = 1;
			}
			ans++;
			if (!flag) break;
		}
		if (x == 1) printf("%lld\n",ans);
		else printf("-1\n");
	}
    return 0;
}

J.小爪的数学题(前缀和)

前缀和算法是一个必须要掌握的算法,详细解释Click here ~~

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
const int N = 1010;
int a[N];
int sum[N];
signed main() {
     
    int n = read();
    for (int i = 1; i <= n; ++i) {
     
        a[i] = read();
        sum[i] = sum[i - 1] + a[i];
    }
    int t = read();
    while(t--) {
     
        int l = read(), r = read();
        if (l > n) {
     
            printf("0\n");
            continue;
        }
        if (r > n) r = n;
        printf("%lld\n", sum[r] - sum[l - 1]);
    }
    return 0;
}

K.小爪的试炼

最长非回文字符串包括三种情况:
① 如果这整个字符串每个字符都一样,那么此时最长的非回文子串长度 == 0
② 如果这整个字符串是回文字符串,那么此时最长的非回文子串长度 == s.size()-1
③ 这整个字符串不是回文字符串,那么此时最长非回文子串长度 == s.size()

#include
#include
#include
#include
#include
#include
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define INF 0x3f3f3f3f
using namespace std;
int read()
{
     
 int w = 1, s = 0;
 char ch = getchar();
 while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
 while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';    ch = getchar(); }
 return s * w;
}
//------------------------ 以上是我常用模板与刷题几乎无关 ------------------------//
const int N = 50010;
string s;
signed main()
{
     
    cin >> s;
    int l = 0, r = s.size() - 1;
    char a = s[0];
    int flag = 1;
     
    while (l <= r) {
     
        if (s[l] != a || s[r] != a) flag = 0;
        if (s[l] == s[r]) l++, r--;
        else break;
    }
    
    if (l > r && flag) printf("0\n");//情况①
    else if (l > r) printf("%lld\n", s.size() - 1);//情况②
    else printf("%lld\n", s.size());//情况③
    return 0;
}

L.小爪的荣耀(模拟)

注意一下空格的输出方式

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
//最大公约数
int gcd(int x,int y) {
     
    if(x<y) swap(x,y);//很多人会遗忘,大数在前小数在后
    //递归终止条件千万不要漏了,辗转相除法
    return x % y ? gcd(y, x % y) : y;
}
//计算x和y的最小公倍数
int lcm(int x,int y) {
     
    return x * y / gcd(x, y);//使用公式
}
int ksm(int a, int b, int mod) {
      int s = 1; while(b) {
     if(b&1) s=s*a%mod;a=a*a%mod;b>>=1;}return s;}
//------------------------ 以上是我常用模板与刷题几乎无关 ------------------------//
signed main() {
     
    int n = read();
    int kase = 1;
    for (int i = 1; i <= n; ++i) {
     
        for (int j = 1; j <= n + n; ++j) {
     
            if (i == j) printf("V");
            else if (j == n + n - kase) {
     
                printf("V");
                kase++;
             }else printf(" ");
        }
        printf("\n");
    }
    return 0;
}

20级爪哇程序设计新生赛1.0(热身赛)

A.小爪学编程(水题)(热身赛)

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
const int N = 200010;
signed main() {
     
    int h1 = read(), m1 = read(), h2 = read(), m2 = read();
    int h3 = 0, m3 = 0;
    h3 = h2 - h1;
    if (m1 > m2) {
     
        h3--;
        m3 = 60 - m1 + m2;
    } else {
     
        m3 = m2 - m1;
    }
    printf("%lld %lld\n", h3, m3);
    return 0;
}

B.小爪的座驾(热身赛)

题解:简单的去重和排序

C++做法的STL sort()和unique()这两个函数,就是这么简单

#include
#include
#include
using namespace std;
int main()
{
     
	int n;
	scanf("%lld", &n);
	int a[1010];
	for (int i = 0; i < n; i++)  scanf("%lld", &a[i]);
	sort(a, a + n);
    int len = unique(a, a + n) - a;//去重,并返回去重后的长度 
    printf("%lld\n", len);//输出去重后的长度 
	for (int i = 0; i < len; i++) printf("%lld ",a[i]); 
	printf("\n");
	return 0; 
} 

C语言做法:就要自己手写两个函数,第一个是排序,第二个去重。

#include
int main()
{
     
	int n;
	int a[1010];
	int b[1010];
	int i, j, t;
	int cnt;
	scanf("%d", &n); 
	for (i = 1; i <= n; i++) scanf("%d", &a[i]); 
	//排序 可以用C++ 的STL sort()函数代替 
	for (i = 1; i <= n; i++) {
     
		for (j = i + 1; j <= n; j++) {
     
			if (a[i] > a[j]) {
     
				t = a[i];
				a[i] = a[j];
				a[j] = t;
			}
		}
	}
	//去重 可以用C++ 的STL unique()函数代替 
	cnt = 0;
    for (i = 1; i <= n; i++) {
     
    	if (a[i] != a[i + 1]) {
     
  		    cnt++;
		    b[cnt] = a[i];	
	    }
	}
	printf("%d\n", cnt);
	for (i = 1; i <= cnt; i++) printf("%d ",b[i]);
	return 0; 
} 

C.小爪的AC(最长上升子序列)(热身赛)

可以不用数组,理解一下代码。

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
signed main(){
       
    int n = read();
    int ans = 1, cnt = 1;
  	int pre = read();
  	n--;
    while (n--) {
     
        int cur = read();
        if (pre < cur) cnt++;
      	else cnt = 1;
        ans = max(ans, cnt);
        pre = cur;
    }
    printf("%lld\n", ans);
    return 0;
}

D.小爪找规律(热身赛)

题解:
杨辉三角,有个小坑,注意一下每一行最后不能有空格
a [ i ] [ j ] = a [ i − 1 ] [ j − 1 ] + a [ i − 1 ] [ j ] a[i][j]=a[i-1][j-1]+a[i-1][j] a[i][j]=a[i1][j1]+a[i1][j]

#include
#include
#include
#include
#include
#include
#include
#include
 
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define ll long long
#define int ll
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MOD 1e9 + 7
using namespace std;
int read()
{
     
    int w = 1, s = 0;
    char ch = getchar();
    while (ch < '0' || ch>'9') {
      if (ch == '-') w = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9') {
      s = s * 10 + ch - '0';ch = getchar(); }
    return s * w;
}
int a[25][25];
signed main()
{
     
	int n = read();
	for (int i = 1; i <= n; i++) a[i][1] = a[i][i] = 1;
	for (int i = 1; i <= n; i++) {
     
	    for (int j = 2; j < i; j++) {
     
	        a[i][j] = a[i - 1][j] + a[i - 1][j - 1];
	    }
	}
	    
	for (int i = 1; i <= n; i++) {
     
	    printf("%lld", a[i][1]);
	    for (int j = 2; j <= i; j++) {
     
	        printf(" %lld", a[i][j]);
	    }
	    printf("\n");
	}
	return 0;
}

你可能感兴趣的:(竞赛,题解,算法,字符串,c++,代码规范,动态规划)