stanford机器学习 实验1.2

1. 线性拟合问题的迭代解法

  • batch gradient descent

梯度下降法,每次沿着梯度方向对于参数移动小的距离。

image

image

有两种具体实现,一种是每次移动的时候考虑所有的实验点,这种在训练集合较大的时候开销比较大。(如下,每次扫描所有m个试验点)

image

另外一种是stochastic gradient deseent

扫描每个点的时候就决定了参数的按照该点的梯度进行参数调整。即

每次参数调整只考虑当前一个试验点。这个收敛速度会更快,但是不保证能收敛到最佳,但是如果逐步调小的值可以收敛到最佳。

image

 

 

 

    我个人觉得gradient descent的方法都是依赖起始位置吧,最终都是一个局部最优结果。

 

2. 矩阵的导数(matrix derivative),矩阵的迹(trace)

 

3. 最小二乘法

这里课件利用矩阵的导数定义(这里 是一个向量其实),矩阵的trace的特性

image

 

image image

image  结果于从向量投影角度理解最小二乘解法是一致的。

 

 

 

 

 

 

 

 

 

 

 

4. 概率角度看

image 

image image

image

 

 

 

 

5. 局部加权线性回归

 

就是说当我们考虑预测Y=f(X)的时候,要优先考虑X附近的试验点的特性,他们给予较高的权重,而距离X较远的试验点影响系数要小一些。

前面讲到的优化算法的目标步骤如下

image

 

 

而对于locally weighted linear regression

image

 

image 这样离X近的点影响因子会大

 

局部加权应该效果会更好一些,但是普通的线性回归我们离线计算好参数就OK了,在线不需要载入训练的点数据了。

但是局部加权则需要在计算每一个Y=f(x)的时候都要载入训练数据,对于不同的X,不同。

 

局部加权线性回归是一种non-parametric的方法。

 

 

 

 

6. 分类与逻辑回归

image  image

假设分类目标就是{0,1}两种可能。预测分类

image

image 

image

image

image image

image 梯度法规则  注意和线性回归是形式是一样的 但是不是一个线性函数了(g(z))。

 

 

 

 

 

 

 

 

 

 

 

 

7. perceptron学习方法

与上面的logsitic g(z)输出0-1之间的值不同,这里让g(z)只输出0或者1

image

image

 

 

8. 牛顿法

image

 

 

 

image

  上图展示了利用牛顿法求解f(x) = 0

那么对应到我们的最小二乘问题

image =0

image

Newton-Raphson 针对是向量的情况

image

image  H -  Hessian

 

 

 

 

 

9. 推广的线性模型

指数系

都可以写为下面的形式

image

image  考虑上面的逻辑回归对应的伯努利模型

image  注意image image image

image 

 

对照参考下《语音与语言处理》P231

预测   如果我们用线性模型去拟合 显然不合适因为右侧取值可以是任意值而左侧是[0,1]

那么我们可以考虑利用去预测odds

但是左侧还是属于, 于是我们最左侧取 log  OK 这个时候就和上面一致了。。。image

你可能感兴趣的:(机器学习)