使用scrapy爬取前程无忧51job网站

讲下爬前程的思路吧:
1.首先最先想到的就是在下图页面,通过response去获定位Xpath路径来得到值使用scrapy爬取前程无忧51job网站_第1张图片
2.当我去获取class=‘e’ 对应的值发现不是我想要的,往class='t’下方的span时取不到值,返回空列表
使用scrapy爬取前程无忧51job网站_第2张图片
3. 这时在网页上右键查看源码,发现class=‘e’得到的值在这,继续往下看发现我们想要的值在javascript中
使用scrapy爬取前程无忧51job网站_第3张图片
使用scrapy爬取前程无忧51job网站_第4张图片
4.我尝试的点击了第二页获取请求的地址,想尝试的能否获取一个纯json的网址,发现进到的还是第二页的主界面,并没有网址中包含纯json的文本
使用scrapy爬取前程无忧51job网站_第5张图片
使用scrapy爬取前程无忧51job网站_第6张图片
4. 那就只能想办法从前面的网页源码中获取内容了,这也是前程的反爬措施,想了挺久的,知道怎么去实现苦于没有方法,后面看到一位博主的方法存html文件,利用正则去匹配我们想要的内容,我们想要的内容其实是一串json赋予了一个变量window.SEARCH_RESULT 。利用json的方法将字符串转成字典。后续的操作就容易多了




5. 在页面上我们可以获取到详细信息的url值
使用scrapy爬取前程无忧51job网站_第7张图片
6. 然后通过scrapy.Request 中callback,利用新定义的方法请求这个url地址去解析响应的文本内容



7. 然后通过父级标签获取子标签的所有内容(找了好久得到了个方法,挺实用的)可以参考父级获取子标签的所有文本内容

父级获取子标签的所有文本内容

使用scrapy爬取前程无忧51job网站_第8张图片
9. 最后就是构造下一页的url,实现翻页的功能

之前脑子好像有点不好使一直忘记开管道了,导致一直没有保存数据,所以注意一定要开管道设置


附上代码:
spider主程序的py文件

# -*- coding: utf-8 -*-
import scrapy
import json
import re
from scrapy import *

class Job51Spider(scrapy.Spider):
    name = 'Job51'
    allowed_domains = ['jobs.51job.com', 'search.51job.com']
    url = 'https://search.51job.com/list/040000,000000,0000,00,9,99,java,2,{}.html?'
    page = 1
    start_urls = [url.format(str(page))]

    def parse(self, response):
        try:
            body = response.body.decode("GBK")
            with open("job.html", "w", encoding='utf-8') as f:
                f.write(body) # 此处需要拿到网页通过正则匹配
            data = re.findall('window.__SEARCH_RESULT__ =(.+)}', str(body))[0] + "}"
            data = json.loads(data)
            for list in data["engine_search_result"]:
                item = {
     }
                item["name"] = list["company_name"]
                item["price"] = list["providesalary_text"]
                item["workarea"] = list["workarea_text"]
                item["updatedate"] = list["updatedate"]
                item["companytype"] = list["companytype_text"]
                item["jobwelf"] = list["jobwelf"]
                item["companyind"] = list["companyind_text"]
                item["href"] = list["job_href"]
                # print(type(item["href"]))
                detail_url = item["href"]
                yield scrapy.Request(
                    detail_url,
                    callback=self.parser_detail,
                    meta={
     "item": item}
                )
            self.page += 1
            next_url = self.url.format(str(self.page))
            yield scrapy.Request(
                next_url,
                callback=self.parse
            )

        except TypeError:
            print("爬取结束")



    def parser_detail(self,response):
        item = response.meta["item"]
        welfare = response.xpath("//div[@class='bmsg job_msg inbox']").xpath('string(.)').extract()[0]
        item["content"] = welfare
        yield item

piplines.py文件

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html

from pymongo import MongoClient

client = MongoClient(host="127.0.0.1", port=27017)

collection = client["Job"]["result"]


class JobPipeline(object):
    def process_item(self, item, spider):
        collection.insert(dict(item))
        return item

setting文件(仅开启项)

BOT_NAME = 'Job'

SPIDER_MODULES = ['Job.spiders']
NEWSPIDER_MODULE = 'Job.spiders'
ROBOTSTXT_OBEY = True
COOKIES_ENABLED = False
DEFAULT_REQUEST_HEADERS = {
     
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.92 Safari/537.36',
    'Cookie': 'guid=e93e7f6213a66f3dde7a0e1; _ujz=MTY0MTc3NDk3MA%3D%3D; ps=needv%3D0; 51job=cuid%3D164177497%26%7C%26cusername%3Dfuwei_fw123%2540163.com%26%7C%26cpassworB6%25CE%25B0%26%7C%26cemail%3Dfuwei_fw123%2540163.com%26%7'

ITEM_PIPELINES = {
     
   'New.pipelines.NewPipeline': 300,
}
}

附上mongodb的截图(爬取的速度还是慢了,后续优化为分布式爬虫)
使用scrapy爬取前程无忧51job网站_第9张图片

你可能感兴趣的:(爬虫,python)