Pytorch Fashion_MNIST直接离线加载二进制文件到pytorch

说明:Fashion_MNIST直接离线加载二进制文件到pytorch


'''
将4个gz直接加载到pytoch用来训练
    t10k-images-idx3-ubyte.gz
    t10k-labels-idx1-ubyte.gz
    train-images-idx3-ubyte.gz
    train-labels-idx1-ubyte.gz
'''

import os
import numpy as np
import gzip
import matplotlib.pyplot as plt

import torch
import torch.utils.data as Data
from torchvision import datasets, transforms
from torch.autograd import Variable

import time



dataPath = 'E:/fashion_binary_gz/'

# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

batch_size = 4


def load_data(data_folder, data_name, label_name):
    """
        data_folder: 文件目录
        data_name: 数据文件名
        label_name:标签数据文件名
    """
    with gzip.open(os.path.join(data_folder,label_name), 'rb') as lbpath: # rb表示的是读取二进制数据
        y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(os.path.join(data_folder,data_name), 'rb') as imgpath:
        x_train = np.frombuffer(
            imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
    return (x_train, y_train)



class DealDataset(Data.Dataset):
    """
        读取数据、初始化数据
    """
    def __init__(self, folder, data_name, label_name,transform=None):
        (train_set, train_labels) = load_data(folder, data_name, label_name) # 其实也可以直接使用torch.load(),读取之后的结果为torch.Tensor形式
        self.train_set = train_set
        self.train_labels = train_labels
        self.transform = transform

    def __getitem__(self, index):

        img, target = self.train_set[index], int(self.train_labels[index])
        if self.transform is not None:
            img = self.transform(img)
        return img, target

    def __len__(self):
        return len(self.train_set)


# 实例化这个类,然后我们就得到了Dataset类型的数据,记下来就将这个类传给DataLoader,就可以了。
trainDataset = DealDataset(dataPath,
                           "train-images-idx3-ubyte.gz",
                           "train-labels-idx1-ubyte.gz",
                           transform=transforms.ToTensor())

testDataset = DealDataset(dataPath,
                          "t10k-images-idx3-ubyte.gz",
                          "t10k-labels-idx1-ubyte.gz",
                          transform=transforms.ToTensor())

# 训练数据和测试数据的装载
train_loader = Data.DataLoader(
    dataset=trainDataset,
    batch_size=100, # 一个批次可以认为是一个包,每个包中含有100张图片
    shuffle=False,
)

test_loader = Data.DataLoader(
    dataset=testDataset,
    batch_size=100,
    shuffle=False,
)


if __name__ == '__main__':


    # 这里trainDataset包含:train_labels, train_set等属性;  数据类型均为ndarray
    print(f'trainDataset.train_labels.shape:{trainDataset.train_labels.shape}\n')
    print(f'trainDataset.train_set.shape:{trainDataset.train_set.shape}\n')


    # 这里train_loader包含:batch_size、dataset等属性,数据类型分别为int,DealDataset
    # dataset中又包含train_labels, train_set等属性;  数据类型均为ndarray
    print(f'train_loader.batch_size: {train_loader.batch_size}\n')
    print(f'train_loader.dataset.train_labels.shape: {train_loader.dataset.train_labels.shape}\n')
    print(f'train_loader.dataset.train_set.shape: {train_loader.dataset.train_set.shape}\n')



    dataiter = iter(train_loader)
    images, labels = dataiter.next()
    images = images.numpy()

    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    # plot the images in the batch, along with the corresponding labels
    fig = plt.figure(figsize=(25, 4))
    for idx in np.arange(batch_size):
        ax = fig.add_subplot(2, batch_size/2, idx+1, xticks=[], yticks=[])
        # ax.imshow(np.squeeze(images[idx]), cmap='gray')
        ax.imshow(np.squeeze(images[idx]), cmap='gray')
        ax.set_title(classes[labels[idx]])
    plt.show()

 

运行结果

Pytorch Fashion_MNIST直接离线加载二进制文件到pytorch_第1张图片

显示图像

Pytorch Fashion_MNIST直接离线加载二进制文件到pytorch_第2张图片

你可能感兴趣的:(Pytorch)