『pytorch』Pytorch - 图像变换函数集合

文章目录

  • 一、必要的 python 模块
  • 二、PyTorch 图像变换函数
    • 2.1 判断图像数据类型
    • 2.2 to_tensor(pic)
    • 2.3 to_pil_image(pic, mode=None)
    • 2.4 normalize(tensor, mean, std)
    • 2.5 resize(img, size, interpolation=Image.BILINEAR)
    • 2.6 pad(img, padding, fill=0, padding_mode='constant')
    • 2.7 crop(img, i, j, h, w)
    • 2.8 center_crop(img, output_size)
    • 2.9 resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR)
    • 2.10 hflip(img)
    • 2.11 vflip(img)
    • 2.12 five_crop(img, size)
    • 2.13 ten_crop(img, size, vertical_flip=False)
    • 2.14 adjust_brightness(img, brightness_factor)
    • 2.15 adjust_contrast(img, contrast_factor)
    • 2.16 adjust_saturation(img, saturation_factor)
    • 2.17 adjust_hue(img, hue_factor)
    • 2.18 adjust_gamma(img, gamma, gain=1)
    • 2.19 rotate(img, angle, resample=False, expand=False, center=None)
    • 2.20 affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)
    • 2.21 to_grayscale(img, num_output_channels=1)
  • 参考链接


一、必要的 python 模块

PyTorch 的 Vision 模块提供了图像变换的很多函数.

torchvision/transforms/functional.py

from __future__ import division
import torch
import sys
import math
from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import collections
import warnings
import matplotlib as plt

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

以下图为例:

img_file = "test.jpe"
img = Image.open(img_file)
width, height = img.size #(750, 815)
img.show()

二、PyTorch 图像变换函数

2.1 判断图像数据类型

# 图像格式检查,如,pil, tensor, numpy
def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)

def _is_tensor_image(img):
    return torch.is_tensor(img) and img.ndimension() == 3

def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {
     2, 3})
# example:
_is_pil_image(img)
# True

_is_tensor_image(img)
# False

_is_numpy_image(img)
# False

_is_numpy_image(np.array(img))
# True

2.2 to_tensor(pic)

PIL Imagenupy.ndarray 转换为 tensor

def to_tensor(pic):
    """
    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic) or _is_numpy_image(pic)):
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

    if isinstance(pic, np.ndarray):
        # handle numpy array
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
    # PIL image mode: L, P, I, F, RGB, YCbCr, RGBA, CMYK
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img

2.3 to_pil_image(pic, mode=None)

tensorndarray 转换为 PIL Image

def to_pil_image(pic, mode=None):
    """
    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes

    Returns:
        PIL Image: Image converted to PIL Image.
    """
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {
     2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} '\
                             'dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
            pic.unsqueeze_(0)

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {
     2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} '\
                             'dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

    npimg = pic
    if isinstance(pic, torch.FloatTensor):
        pic = pic.mul(255).byte()
    if isinstance(pic, torch.Tensor):
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
        elif npimg.dtype == np.int16:
            expected_mode = 'I;16'
        elif npimg.dtype == np.int32:
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

    elif npimg.shape[2] == 4:
        permitted_4_channel_modes = ['RGBA', 'CMYK']
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)

2.4 normalize(tensor, mean, std)

归一化 tensor 的图像. in-place 计算.

def normalize(tensor, mean, std):
    """
    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channely.

    Returns:
        Tensor: Normalized Tensor image.
    """
    if not _is_tensor_image(tensor):
        raise TypeError('tensor is not a torch image.')

    # This is faster than using broadcasting, don't change without benchmarking
    for t, m, s in zip(tensor, mean, std):
        t.sub_(m).div_(s)
    return tensor
# example
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
img_normalize = normalize(img_tensor, mean, std)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(to_pil_image(img_normalize))
ax2.axis("off")
ax2.set_title("normalize img")
plt.show()

2.5 resize(img, size, interpolation=Image.BILINEAR)

对输入的 PIL Image 进行 resize 到给定尺寸.
参数 size 为调整后的尺寸.
如果 size 是数组(h, w),则直接调整到该 (h, w) 尺寸.
如果 size 是一个 int 值,则调整后图像的最短边是该值,且保持固定的长宽比.

def resize(img, size, interpolation=Image.BILINEAR):
    """
    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. 
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)
# example:
img_resize_256x256 = resize(img, (256, 256))  # (256, 256)
img_resize_256 = resize(img, 256)  # (256, 278)

# vis
ax1 = plt.subplot(1, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 3, 2)
ax2.imshow(img_resize_256x256)
ax2.axis("off")
ax2.set_title("resize_256x256 img")
ax3 = plt.subplot(1, 3, 3)
ax3.imshow(img_resize_256)
ax3.axis("off")
ax3.set_title("resize_256 img")
plt.show()

2.6 pad(img, padding, fill=0, padding_mode=‘constant’)

根据指定的 padding 模式和填充值,对给定的 PIL Image 的所有边进行 pad 处理.
参数 padding - int 或 tuple 形式.
padding:

  • 如果是 int 值 ,则对所有的边都 padding 该 int 值.
  • 如果是长度为 2 的tuple,则对 left/right 和 top/bottom 分别进行 padding.
  • 如果是长度为 4 的 tuple,则对 left,top,right, bottom 边分别进行 padding.

参数 fill - 像素填充值,默认为 0. 如果值是长度为 3 的 tuple,则分别对 R,G,B 通道进行填充. 仅用于当 padding_mode='constant' 的情况.

参数 padding_mode - 填充的类型,可选:constant,edge,reflect,symmetric. 默认为 constant. 填充常数值.

  • constant - padding 填充常数值 fill.
  • edge - padding 图像边缘的最后一个值.
  • reflect - padding 图像的反射(reflection)值,(不对图像边缘的最后一个像素值进行重复)
    如,[1, 2, 3, 4] 在 reflect 模式下在 两边 padding 2 个元素值,会得到:
    [3, 2, 1, 2, 3, 4, 3, 2]
  • symmetric - padding 图像的反射(reflection)值,(对图像边缘的最后一个像素值进行重复).
    如,[1, 2, 3, 4] 在 symmetric 模式下在 两边 padding 2 个元素值,会得到:
    [2, 1, 1, 2, 3, 4, 4, 3]
def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple): Padding on each border. 
        fill: Pixel fill value for constant fill. Default is 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. 
                      Default is constant.
    Returns:
        PIL Image: Padded image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError('Got inappropriate fill arg')
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')

    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
        raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if padding_mode == 'constant':
        if img.mode == 'P':
            palette = img.getpalette()
            image = ImageOps.expand(img, border=padding, fill=fill)
            image.putpalette(palette)
            return image

        return ImageOps.expand(img, border=padding, fill=fill)
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
        if isinstance(padding, Sequence) and len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        if isinstance(padding, Sequence) and len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, 
                         ((pad_top, pad_bottom), (pad_left, pad_right)), 
                         padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, 
                         ((pad_top, pad_bottom), 
                          (pad_left, pad_right), 
                          (0, 0)), 
                         padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, 
                         ((pad_top, pad_bottom), (pad_left, pad_right)), 
                         padding_mode)

        return Image.fromarray(img)
# example:
img_padding = pad(img, (10, 20, 30 ,40), fill=128)	# (750, 815) -> (790, 875)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_padding)
ax2.axis("off")
ax2.set_title("padding img")
plt.show()

2.7 crop(img, i, j, h, w)

裁剪给定的 PIL Image.

def crop(img, i, j, h, w):
    """
    Args:
        img (PIL Image): Image to be cropped.
        i: Upper pixel coordinate.
        j: Left pixel coordinate.
        h: Height of the cropped image.
        w: Width of the cropped image.

    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.crop((j, i, j + w, i + h))
# example
img_crop = crop(img, 100, 100, 500, 500)	# (750, 815) -> (500, 500)

ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_crop)
ax2.axis("off")
ax2.set_title("crop img")
plt.show()

2.8 center_crop(img, output_size)

def center_crop(img, output_size):
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    w, h = img.size
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)
#example
img_centercrop = center_crop(img, (256, 256))	# (750, 815) -> (256, 256)

ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_centercrop)
ax2.axis("off")
ax2.set_title("centercrop img")
plt.show()

2.9 resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR)

对给定 PIL Image 进行裁剪,并 resize 到特定尺寸.

def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
    """
    Args:
        img (PIL Image): Image to be cropped.
        i: Upper pixel coordinate.
        j: Left pixel coordinate.
        h: Height of the cropped image.
        w: Width of the cropped image.
        size (sequence or int): Desired output size. Same semantics as ``resize``.
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
    img = crop(img, i, j, h, w)
    img = resize(img, size, interpolation)
    return img
# example
img_resizedcrop = resized_crop(img, 100, 100, 500, 500, (256, 256))	# (750, 815) -> (500, 500) -> (256, 256)

ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_resizedcrop)
ax2.axis("off")
ax2.set_title("resizedcrop img")
plt.show()

2.10 hflip(img)

水平翻转 (Horizontally flip) 给定的 PIL Image.

def hflip(img):
    """
    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Horizontall flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_LEFT_RIGHT)

2.11 vflip(img)

垂直翻转 (Vertically flip) 给定的 PIL Image.

def vflip(img):
    """
    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Vertically flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_TOP_BOTTOM)
# example:
img_hflip = hflip(img)
img_vflip = vflip(img)

ax1 = plt.subplot(1, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 3, 2)
ax2.imshow(img_hflip)
ax2.axis("off")
ax2.set_title("hflip img")
ax3 = plt.subplot(1, 3, 3)
ax3.imshow(img_vflip)
ax3.axis("off")
ax3.set_title("vflip img")
plt.show()

2.12 five_crop(img, size)

Crop the given PIL Image into four corners and the central crop.
从给定 PIL Image 的四个角和中间裁剪出五个子图像.

def five_crop(img, size):
    """
    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.

    Returns:
       tuple: tuple (tl, tr, bl, br, center)
              Corresponding top left, top right, bottom left, 
              bottom right and center crop.
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    w, h = img.size
    crop_h, crop_w = size
    if crop_w > w or crop_h > h:
        raise ValueError("Requested crop size {} is bigger than input size {}".format(size,
                                                                                      (h, w)))
    tl = img.crop((0, 0, crop_w, crop_h))
    tr = img.crop((w - crop_w, 0, w, crop_h))
    bl = img.crop((0, h - crop_h, crop_w, h))
    br = img.crop((w - crop_w, h - crop_h, w, h))
    center = center_crop(img, (crop_h, crop_w))
    return (tl, tr, bl, br, center)
# example:
img_tl, img_tr, img_bl, img_br, img_center = five_crop(img, (400, 400))

ax1 = plt.subplot(2, 3, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(2, 3, 2)
ax2.imshow(img_tl)
ax2.axis("off")
ax2.set_title("tl img")
ax3 = plt.subplot(2, 3, 3)
ax3.imshow(img_tr)
ax3.axis("off")
ax3.set_title("tr img")
ax4 = plt.subplot(2, 3, 4)
ax4.imshow(img_bl)
ax4.axis("off")
ax4.set_title("bl img")
ax5 = plt.subplot(2, 3, 5)
ax5.imshow(img_br)
ax5.axis("off")
ax5.set_title("br img")
ax6 = plt.subplot(2, 3, 6)
ax6.imshow(img_center)
ax6.axis("off")
ax6.set_title("center img")
plt.show()

2.13 ten_crop(img, size, vertical_flip=False)

将给定 PIL Image 裁剪出的四个角和中间部分的五个子图像,每个子图像进行翻转处理. 默认时水平翻转.

def ten_crop(img, size, vertical_flip=False):
    """
    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
       tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
       Corresponding top left, top right, bottom left, bottom right and center crop
       and same for the flipped image.
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five

2.14 adjust_brightness(img, brightness_factor)

调整图像亮度.

def adjust_brightness(img, brightness_factor):
    """
    Args:
        img (PIL Image): PIL Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness.
            Can be any non negative number. 
            0 gives a black image, 
            1 gives the original image,
            2 increases the brightness by a factor of 2.

    Returns:
        PIL Image: Brightness adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img
# example:
img_adjust_brightness = adjust_brightness(img, 2.5)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_brightness)
ax2.axis("off")
ax2.set_title("adjust_brightness img")
plt.show()

2.15 adjust_contrast(img, contrast_factor)

调整对比度.

def adjust_contrast(img, contrast_factor):
    """
    Args:
        img (PIL Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. 
            Can be any non negative number. 
            0 gives a solid gray image, 
            1 gives the original image, 
            2 increases the contrast by a factor of 2.

    Returns:
        PIL Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img
# example:
img_adjust_contrast = adjust_contrast(img, 2.5)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_contrast)
ax2.axis("off")
ax2.set_title("adjust_contrast img")
plt.show()

2.16 adjust_saturation(img, saturation_factor)

调整颜色饱和度.

def adjust_saturation(img, saturation_factor):
    """
    Args:
        img (PIL Image): PIL Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 
            0 will give a black and white image, 
            1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        PIL Image: Saturation adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img
# example
img_adjust_saturation = adjust_saturation(img, 2.5)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_saturation)
ax2.axis("off")
ax2.set_title("adjust_saturation img")
plt.show()

2.17 adjust_hue(img, hue_factor)

  • 调整图像 HUE.
  • 通过将图像转换为 HSV 空间,并周期地移动在 hue 通道(H) 的强度,以实现图像 hue 的调整. 最后,再将结果转换回原始的图像模式.
  • 参数 hue_factor - H 通道平移的因子,其值必须在区间 [-0.5, 0.5].
def adjust_hue(img, hue_factor):
    """
    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. 
            Should be in [-0.5, 0.5]. 
            0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. 
            Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
    if not(-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    input_mode = img.mode
    if input_mode in {
     'L', '1', 'I', 'F'}:
        return img

    h, s, v = img.convert('HSV').split()

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over='ignore'):
        np_h += np.uint8(hue_factor * 255)
    h = Image.fromarray(np_h, 'L')

    img = Image.merge('HSV', (h, s, v)).convert(input_mode)
    return img
# example:
img_adjust_hue = adjust_hue(img, 0.5)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_hue)
ax2.axis("off")
ax2.set_title("adjust_hue img")
plt.show()

2.18 adjust_gamma(img, gamma, gain=1)

对图像进行伽马校正(gamma correction). 也被叫作 Power Law Transform.

def adjust_gamma(img, gamma, gain=1):
    """
    Args:
        img (PIL Image): PIL Image to be adjusted.
        gamma (float): Non negative real number, 如公式中的 \gamma 值.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part

    img = img.convert(input_mode)
    return img
# example:
img_adjust_gamma = adjust_gamma(img, 0.5)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_adjust_gamma)
ax2.axis("off")
ax2.set_title("adjust_gamma img")
plt.show()

2.19 rotate(img, angle, resample=False, expand=False, center=None)

旋转图像.

  • 参数 resample
    可选值:PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC.
    如果参数 resample 被忽略,或图像的模式是 1 或 P,则resample=PIL.Image.NEAREST.
  • 参数 expand
    如果 expand=True,则延展输出图像,以能包含旋转后的全部图像.
    如果 expand=False 或被忽略,则保持输出图像与输入图像的尺寸一致.
    expand 假设旋转是以中心进行旋转,且没有平移.
def rotate(img, angle, resample=False, expand=False, center=None):
    """
    Args:
        img (PIL Image): PIL Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or 
                  ``PIL.Image.BICUBIC``, optional):
        expand (bool, optional): Optional expansion flag.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    """

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.rotate(angle, resample, expand, center)
# example:
img_rotate = rotate(img, 60)

# vis
ax1 = plt.subplot(1, 2, 1)
ax1.imshow(img)
ax1.axis("off")
ax1.set_title("orig img")
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(img_rotate)
ax2.axis("off")
ax2.set_title("rotate img")
plt.show()

2.20 affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)

保持图像中心不变,进行仿射变换.

def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
    #       RSS(a, scale, shear) = [ cos(a)*scale    -sin(a + shear)*scale     0]
    #                              [ sin(a)*scale    cos(a + shear)*scale     0]
    #                              [     0                  0          1]
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

    angle = math.radians(angle)
    shear = math.radians(shear)
    scale = 1.0 / scale

    # Inverted rotation matrix with scale and shear
    d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
    matrix = [
        math.cos(angle + shear), math.sin(angle + shear), 0,
        -math.sin(angle), math.cos(angle), 0
    ]
    matrix = [scale / d * m for m in matrix]

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
    matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
    matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
    matrix[2] += center[0]
    matrix[5] += center[1]
    return matrix


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """
    Args:
        img (PIL Image): PIL Image to be rotated.
        angle (float or int): rotation angle in degrees between -180 and 180, 
                              clockwise direction.
        translate (list or tuple of integers): horizontal and vertical translations 
                              (post-rotation translation)
        scale (float): overall scale
        shear (float): shear angle value in degrees between -180 to 180, 
                       clockwise direction.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or 
                  ``PIL.Image.BICUBIC``, optional):
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
    kwargs = {
     "fillcolor": fillcolor} if PILLOW_VERSION[0] == '5' else {
     }
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)

2.21 to_grayscale(img, num_output_channels=1)

将图像转换为灰度图.

def to_grayscale(img, num_output_channels=1):
    """
    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : 
                returned image is single channel
            if num_output_channels = 3 : 
                returned image is 3 channel with r = g = b
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img

参考链接

  1. https://www.aiuai.cn/aifarm759.html

你可能感兴趣的:(#,pytorch)