- Rstudio:强大的R语言集成开发环境(IDE)
简说基因-专业生信合作伙伴
r语言开发语言
Rstudio应该是R语言使用的标配,尽管Rstudio的母公司Posit推出了新一代的集成开发环境Positron,但其还处于开发阶段。作为用户不妨让其成熟后再使用,现阶段还是Rstudio更稳定。如果你在生物信息学或统计学领域工作,R语言几乎是必备的工具之一。而RStudio,作为R语言最流行的集成开发环境(IDE),为数据分析、可视化和编程提供了非常友好的平台。今天我们来介绍一下RStudi
- python做生物信息学分析_Python从零开始第五章生物信息学①提取差异基因
吴敬欣
python做生物信息学分析
目前来说,做生物信息学的人越来越多,但是我觉得目前而言做生信的主要有三类人:老本行是做实验的,做生信可能是为了辅助研究或者是为了发paper(有非常多的临床生选择趟生信这波水)主要是做生信的,主要涵盖高通量测序数据分析,组学数据分析等等,专门从事生物学数据分析的这群人,其大部分也是本科生物狗作为强大的生力军,以调包写R,python为主。那么这群人就要熟悉看各种包的tutorial以及如何进行常规
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 用Python实现生信分析——序列搜索和比对工具详解
写代码的M教授
生信分析python
1.什么是序列搜索和比对工具?序列搜索和比对工具在生物信息学中用于在大型序列数据库中搜索与查询序列相似的序列,并进行比对分析。这些工具可以帮助研究人员识别与目标序列相关的已知序列,从而推测其功能、结构和进化关系。常见的序列搜索和比对工具包括:BLAST(BasicLocalAlignmentSearchTool):最常用的序列搜索工具,能够快速找到与查询序列相似的序列。FASTA:另一个常用的序列
- 大模型在生物信息学中的应用前景
AI天才研究院
AI人工智能与大数据ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型在生物信息学中的应用前景关键词:大模型、生物信息学、基因组学、蛋白质组学、应用前景摘要:本文将深入探讨大模型在生物信息学中的应用前景。首先,我们将介绍大模型的基础知识,包括其定义、特点和优势。接着,我们将分析大模型在生物信息学中的问题背景和具体应用场景。然后,我们将详细讲解大模型在生物信息学中的数据处理与分析方法,以及其在基因组学和蛋白质组学中的应用案例。最后,我们将讨论大模型在生物信息学中
- 【深度学习】条件随机场(CRF)深度解析:原理、应用与前沿
白熊188
深度学习深度学习人工智能
条件随机场(CRF)深度解析:原理、应用与前沿一、算法背景知识1.1序列标注的挑战1.2概率图模型演进二、算法理论与结构2.1基本定义2.2特征函数设计状态特征(节点特征)转移特征(边特征)2.3线性链CRF结构2.4训练与解码2.5前向-后向算法三、模型评估3.1评估指标3.2评估方法对比3.3性能基准(CoNLL-2003NER)四、应用案例4.1自然语言处理4.2生物信息学4.3计算机视觉五
- 最新期刊影响因子,基本包含全部期刊
Bioinfo科研生信筆記
影响因子2024年期刊影响因子期刊因子因子IF
原文链接:2024年期刊最新影响因子(IF)2024年期刊最新影响因子(IF)BioinfoR生信筆記,注于分享生物信息学相关知识和R语言绘图教程。
- 向量检索中的 ANN(Approximate Nearest Neighbor)技术
XiaoQiong.Zhang
AI人工智能
向量检索中的ANN(ApproximateNearestNeighbor)技术是一种在高维空间中高效查找与查询向量q最相似的Top-K个向量的方法,其核心在于牺牲一定的精度(召回率)以换取比精确最近邻搜索(ExactNN)高数个数量级的查询速度。它广泛应用于图像/视频检索、自然语言处理(如语义搜索、问答)、推荐系统、生物信息学等场景。⸻一、基本问题定义目标:给定一个查询向量q,在一个庞大的向量集合
- cd-hit安装与使用-cd-hit v4.8.1(bioinfomatics tools-005)
让学习成为一种生活方式
基因组多组学序列比对githublinux论文阅读数据挖掘
01背景介绍CD-HIT(ClusterDatabaseatHighIdentitywithTolerance)是一种广泛使用的生物信息学工具,主要用于快速聚类生物序列数据,如蛋白质或核酸序列,以减少数据冗余和简化数据分析。其基本原理涉及比较序列之间的相似性,将高度相似的序列分组到同一个聚类中,从而减少数据集的复杂性。1.1算法原理CD-HIT的算法原理主要包括以下几个方面:序列比较和相似性评分:
- 基于 Java 的大数据分布式计算在基因编辑数据分析与精准医疗中的应用进展
知识产权13937636601
计算机java分布式计算基因编辑
随着基因测序成本断崖式下降(单人类全基因组低于100)和CRISPR基因编辑技术成熟,全球日均产生超20PB基因数据。传统单机生物信息学工具难以应对海量多组学数据的整合、分析与临床转化。本文将系统阐述**Java技术栈如何构建新一代基因大数据计算中枢**:基于Hadoop+Spark的分布式架构实现千倍加速的基因组比对;通过Flink流式计算引擎支撑CRISPR脱靶效应实时预测;利用ApacheA
- PostgreSQL 在生物信息学中的应用
belldeep
PostgreSQL生物信息学postgresql数据库生物信息学
PostgreSQL(简称PG)是一种强大的开源关系型数据库管理系统,因其高可靠性、扩展性和支持复杂查询的特性,在生物信息学领域得到广泛应用。以下是其核心应用场景及优势分析:一、生物数据存储与管理生物信息学涉及海量异构数据,PG的结构化存储能力和可扩展性使其成为理想选择。1.多类型数据存储基因组数据:存储DNA/RNA序列、基因注释(如GTF/GFF文件)、变异数据(VCF格式)等。例:将基因组序
- 一款适合程序员的流程图/思维导图利器
qq_21478261
#Python可视化python运维思维导图图论机器学习
首发地址:程序员必备流程图/思维导图利器本文介绍graphviz在Python中的接口。graphviz是在复杂网络、生物信息学、软件工程、数据库和网页设计、机器学习等领域使用广泛的图(Graph)可视化利器。graphviz支持Linux、Windows、Mac、Solaris等多个系统,拥有多种编程语言的API(perl、python、ruby、C#等)。graphviz功能先看看graphv
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 7天掌握!MySQL vs 图数据库:混合架构下的复杂关系分析全揭秘
墨瑾轩
数据库学习数据库mysql架构
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在当今的数据密集型世界中,处理和理解复杂的关系网络变得越来越重要。从社交网络到推荐系统,从生物信息学到金融风险评估,这些领域都需要一种能够高效处理高度互联数据的技术。传统的关系型数据库如MySQL,在处理这类问题时遇到了瓶颈。而图数据库则以其独特的结构优势脱颖
- 《机器学习导论(原书第3版)》下载
jiswordsman
机器学习机器学习人工智能
内容简介机器学习的目标是对计算机编程,以便使用样本数据或以往的经验来解决给定的问题。已经有许多机器学习的成功应用,包括分析以往销售数据来预测客户行为,优化机器人的行为以便使用较少的资源来完成任务,以及从生物信息数据中提取知识的各种系统。本书是关于机器学习的内容全面的教科书,其中有些内容在一般的在机器学习导论书中很少介绍。主要内容包括监督学习,贝叶斯决策理论,参数、半参数和非参数方法,多元分析,隐马
- 汉明距离(Hamming Distance)
追逐此刻
算法方法python算法开发语言
1.定义汉明距离是指两个等长字符串在相同位置上不同字符的个数。它常用于衡量两个字符串的相似度,广泛应用于编码理论、信息论、密码学、生物信息学等领域。2.数学表达给定两个等长的字符串x和y,汉明距离d(x,y)定义为:其中:n是字符串的长度,xi和yi分别是x和y的第i个字符,Ⅱ(⋅)是指示函数(当条件成立时返回1,否则返回0)。3.示例二进制字符串:x="10110",y="11110"比较每一位
- 时空图像算法:本文从时间序列光谱分析(TAS)的基础知识出发,详细阐述STIPS中TAS算法的原理和具体操作方法
AI天才研究院
深度学习实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介时空图像(ST-images)是指对空间中的多维图像进行时间编码处理后得到的时间序列图像,它在人类活动、环境变化等场景下具有广泛的应用价值。随着人们对空间的认识的提升和对地球表面所含的微生物信息的获取能力的不断增强,传感器技术的发展给人类的生活带来了前所未有的便利。在这些条件下,利用地球表面的数据、各种传感器设备及相关软件,可以实现从微观到宏观层面的全方位、高速
- Newcpgreport:CpG岛甲基化差异分析
简说基因-专业生信合作伙伴
在人类基因组中,约60%的基因启动子区域都蕴藏着特殊的DNA序列——CpG岛。CpG岛(富含CpG二核苷酸的区域)被称为基因调控的“开关”,它们常位于基因启动子区域,与DNA甲基化、基因沉默等表观遗传现象密切相关。要精准定位这些区域,生物信息学家们开发了多种工具,其中newcpgreport凭借其独特的算法设计和可靠的检测性能,成为该领域的明星工具。功能特点核心功能与原理1.滑动窗口检测法newc
- 生物医学工程导论:学习笔记(四)
Zodornus
生物医学工程学习笔记
生物信息学(Bioinformatics)狭义概念:应用信息科学的理论、方法和技术,来管理、分析和利用生物分子数据。广义概念:应用信息科学的方法和技术,研究生物体系和生物过程中信息的存储、信息的内涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息。(生命科学中的信息科学)目的:处理、归纳、总结海量的生物实验数据,并找到其中的规律。成果:基因测序等。研究内容基因组
- 探索生物信息学的未来:Rust-Bio 库
富嫱蔷
探索生物信息学的未来:Rust-Bio库rust-bioThislibraryprovidesimplementationsofmanyalgorithmsanddatastructuresthatareusefulforbioinformatics.Allprovidedimplementationsarerigorouslytestedviacontinuousintegration.项目地址
- 2025.04.18【数据修复】DCA:高效缺失值插补工具解析
穆易青
单细胞信息可视化
文章目录1.DCA工具简介2.DCA的安装方法3.DCA常用命令1.DCA工具简介在生物信息学领域,数据分析是一个复杂且耗时的过程。DCA(DifferentialCorrelationAnalysis)工具是一个专门设计来识别和分析差异相关性的统计工具。它能够帮助研究者从大量的生物医学数据中,发现变量间的相关性变化,这对于理解复杂疾病的分子机制至关重要。DCA工具通过计算和比较不同样本或条件下变
- 2025.04.17【Stacked area】| 生信数据可视化:堆叠区域图深度解析
穆易青
信息可视化
文章目录生信数据可视化:堆叠区域图深度解析堆叠面积图简介为什么使用堆叠面积图如何使用R语言创建堆叠面积图安装和加载ggplot2包创建堆叠面积图的基本步骤示例代码解读堆叠面积图堆叠面积图的局限性实际应用案例示例:基因表达量随时间变化结论生信数据可视化:堆叠区域图深度解析在生物信息学领域,数据可视化是理解复杂数据集的关键。其中,堆叠面积图(StackedAreaChart)是一种展示多个群体随时间变
- DNA、蛋白质、生物语义语言模型的介绍
bug开发工程师.
语言模型人工智能自然语言处理
主要模型概述ProtBERT:专注于蛋白质序列嵌入,支持多种下游任务如序列分类和功能预测。ProtGPT2:利用生成式模型生成高质量的蛋白质序列,适用于新蛋白质设计。AlphaFold:革命性地预测蛋白质三维结构,推动了结构生物学的发展。TAPE:提供统一的框架进行蛋白质序列表示学习,支持多种生物信息学任务。BioBERT:针对生物医学文本挖掘设计的模型,提升了生物信息处理能力。DNA-BERT:
- matlab在生物学中的应用,MATLAB在生物信息学分析中的应用.doc
weixin_39599097
matlab在生物学中的应用
MATLAB在生物信息学分析中的应用MATLAB在生物序列信息分析中的应用生物技术(生物制药方向09)杨清松0909501162摘要:MATLAB生物信息工具箱为广大用户提供了一个用于基因组和蛋白质组分析的综合环境,它利用数据库资源,使科学研究事半功倍,在工具箱提供的开放环境里,用户甚至可以按照自己的目的来设计和利用分析工具。本文主要介绍MATLAB生物信息工具箱在基因序列分析中的应用,包括确定核
- 用Python实现生信分析——隐马尔可夫模型(HMM)在生物信息学中的应用详解
写代码的M教授
生信分析人工智能python
在生物信息学中,隐马尔可夫模型(HMM)被广泛应用于基因组注释、蛋白质结构预测、基因预测等领域。以下是针对生物信息学应用的详细讲解,包括案例、Python实现、运行结果和分析。1.HMM在生物信息学中的应用场景HMM在生物信息学中的应用非常广泛,以下是一些典型场景:(1)基因预测:HMM可以用来预测DNA序列中的基因。通过建模不同区域(如外显子、内含子、启动子等)的特征,HMM可以识别出可能的基因
- 生物信息学数据库分类
划过手的泪滴t
生物信息学数据库
生物信息学数据库(一)文献数据库1、PubMed:拥有超过两百六十万生物医学文献的数据库,这些文献来源于MEDLINE,也就是生物医学文献数据库、生命科学领域学术杂志、以及在线的专业书籍。链接:PubMed(nih.gov)PubMed存在的问题(1)搜索1995年前文献中排名是为以后的作者(2)搜索1976年以前的文献是没有摘要的(3)1965年前的文献较难搜索(二)一级核酸数据库1、※GenB
- 生物信息学技能树(Bioinformatics)与学习路径
lisw05
生物信息学生物信息学
李升伟整理生物信息学是一门跨学科领域,涉及生物学、计算机科学以及统计学等多个方面。以下是关于生物信息学的学习路径及相关技能的详细介绍。一、基础理论知识1.生物学基础知识需要掌握分子生物学、遗传学、细胞生物学等相关概念。对基因组结构、蛋白质功能及其相互作用有基本理解。2.编程能力掌握至少一种脚本语言(如Python或Perl),用于数据处理和自动化任务3。学习R语言进行数据分析和可视化。3.统计学与
- centos-LLM-生物信息-BioGPT-使用1
淀粉肠狂热粉
生物信息学centoslinux生信生物信息AIGC
参考:GitHub-microsoft/BioGPThttps://github.com/microsoft/BioGPTBioGPT:用于生物医学文本生成和挖掘的生成式预训练转换器|生物信息学简报|牛津学术—BioGPT:generativepre-trainedtransformerforbiomedicaltextgenerationandmining|BriefingsinBioinfor
- 【机器学习】每日一讲-朴素贝叶斯公式
问道飞鱼
机器学习与人工智能机器学习人工智能朴素贝叶斯公式
文章目录**一、朴素贝叶斯公式详解****1.贝叶斯定理基础****2.从贝叶斯定理到分类任务****3.特征独立性假设****4.条件概率的估计****二、在AI领域的作用****1.文本分类与自然语言处理(NLP)****2.推荐系统****3.医疗与生物信息学****4.实时监控与异常检测****5.多模态数据处理****三、推导过程示例(以文本分类为例)****四、代码实现(Python)
- 2025.04.08【工具探索】| SC3:交互式聚类分析的新纪元
穆易青
ClusteringInteractive
文章目录1.SC3工具简介:探索生物信息学中的聚类分析利器1.1为什么选择SC3?1.2SC3的主要功能2.SC3的安装方法:轻松步入单细胞数据分析的大门2.1安装R语言环境2.2安装SC3包2.3安装依赖包3.SC3常用命令:掌握高效数据分析的钥匙3.1数据预处理3.2特征选择3.3聚类分析3.4结果可视化3.5高级分析4.SC3的案例研究4.1数据获取4.2数据预处理和特征选择4.3聚类分析4
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep