- Python 小练习 —— 统计字符串各类字符数量
奶香臭豆腐
python开发语言学习
需求允许用户不断输入一个字符串。写一个函数负责统计该字符串中的字符、数字、空格、特殊字符的个数。代码如下:#统计字符、数字、特殊字符的个数fromtypingimportTuple#使用类型注释所需的库#定义函数,用到了类型注释。defcount_characters(msg:str)->Tuple[int,int,int,int]:digit_count=0#数字计数器alpha_count=0
- 投资组合风险管理
周纠纠
金融科技-计算机相关区块链人工智能
投资组合风险管理市场风险信用风险流动性风险风险指标收益率波动率最大回撤α\alphaα(詹森指数),β\betaβ卡玛比率月胜率上/下行捕获比夏普比率索提诺比率经风险调整的收益率(2)特雷诺比率信息比率IR风险价值(VaR)条件风险价值(CVaR)R2R^2R2金融风险是与金融有关的风险,比如金融市场风险、金融产品风险和金融机构风险等,如果按照风险来源不同,则可以分为信用风险、市场风险、操作风险和
- python股票分析系统部署操作过程及代码实现
大懒猫软件
python开发语言flaskplotlyapirestful
部署一个股票分析系统涉及多个步骤,包括后端服务、前端界面和实时数据更新。以下是一个详细的部署过程,涵盖从代码编写到服务器部署的完整步骤。1.系统架构概述后端:使用Flask提供RESTfulAPI和数据处理服务。前端:使用PlotlyDash构建动态界面,实时显示股票价格走势。数据源:从金融数据API(如AlphaVantage、YahooFinance)获取实时数据。2.系统开发步骤2.1安装必
- Compose - 权限申请
Jomurphys
Composeandroid
一、概念二、使用AccompanistPermissions官方介绍&最新版本不同版本中,权限状态(如PermissionState)中获取属性的方法不同,例如在“0.23.1”中,通过PermissionState.hasPermission属性拿到是否通过的Boolean值,在“0.35.0-alpha”中,通过PermissionState.status.isGranted属性拿到。单个权限
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- SYN-TFO伪造攻击.c
金猪报喜-阿尔法
c语言安全网络
/*--------------------------------------------------*\SYN-TFO伪造攻击作者:alpha编译方法:gcc-osyntfosyntfo.c-pthread\*--------------------------------------------------*/#include#include#include#include#include#
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- penguin.js(个人创作)DDOS脚本
金猪报喜-阿尔法
网络安全java
/*1.6by:tg@alphachnhkCHN———————————————————————————————————————————1.1CHANGELOG:-Addedredirecthandler-Addedcookieparser-Fixedupdateheaders-Addedproxyconnstats-RemovedUAMoption1.2CHANGELOG:-Addedconfig
- 僵尸DDOS设置与部署.c
金猪报喜-阿尔法
网络安全
importsubprocess,sys#
[email protected](sys.argv[2])!=0:ip=sys.argv[2]else:print("\x1b[1;95mIncorrectUsage!\x1b[0m")exit(1)bot=sys.argv[1]Sakura=raw_input("\x1b[1;95mReadyToInstallCrossCompilers?
- DDOS僵尸后端.c
金猪报喜-阿尔法
网络安全
#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include#include#defineMAXFDS1000000//
[email protected]_t{uint32_tip;ch
- AF3 gdt函数解读
qq_27390023
机器学习人工智能生物信息学pythonpytorch
AlphaFold3的函数gdt、gdt_ts以及gdt_ha实现了GlobalDistanceTest(GDT)评分计算,用于衡量蛋白质结构预测的准确性。GDT评分衡量的是预测结构(p1)和真实结构(p2)之间的相似度,主要用于蛋白质结构比较。源代码:defgdt(p1,p2,mask,cutoffs):"""CalculatetheGlobalDistanceTest(GDT)scorefor
- 论文笔记《基于深度学习模型的药物-靶标结合亲和力预测》
I_dyllic
深度学习论文阅读深度学习人工智能
基于深度学习模型的药物-靶标结合亲和力预测这是一篇二区的文章,算是一个综述,记录一下在阅读过程中遇到的问题。文章目录基于深度学习模型的药物-靶标结合亲和力预测前言一、蛋白质接触图谱二、为什么蛋白质图谱的准确性对DTA模型预测结果没有影响1.对这段话的解释2.关于Alphafold3三、随机配体与随机配体节点属性(配体一般指药物)1.什么是随机配体与配体节点属性四、关于深度学习模型对特征的自动学习过
- Kubernetes (K8S)决定弃用 Docker!Kubernetes (K8S)学习详解
熙媛
学习笔记javadockerjenkinslinux服务器
确实如此。Kubernetes现已弃用Docker!!!目前,Kubernetes中的Docker支持功能现已弃用,并将在之后的版本中被删除。Kubernetes之前使用的是一个名为dockershim的模块,用以实现对Docker的CRI支持。但Kubernetes社区发现了与之相关的维护问题,因此建议大家考虑使用包含CRI完整实现(兼容v1alpha1或v1)的可用容器运行时。简而言之,Doc
- 高等代数复习:线性空间
爱吃白饭
高等代数线性代数学习笔记
文章目录线性空间定义和性质线性相关性与秩基与维数矩阵的秩同构坐标子空间子空间的定义和性质子空间的和与交直和陪集和商空间解线性方程组本篇文章适合个人复习翻阅,不建议新手入门使用线性空间定义和性质定义:(线性空间)设集合VVV和数域K\mathbb{K}K,在VVV上定义加法+:V×V→V,(α,β)↦α+β+:V\timesV\toV,(\alpha,\beta)\mapsto\alpha+\bet
- 神经网络常见激活函数 7-ELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络
文章目录ELU函数+导函数函数和导函数图像优缺点pytorch中的ELU函数tensorflow中的ELU函数ELU指数线性单元:ELU(ExponentialLinearUnit)函数+导函数ELU函数ELU={xx>=0α(ex−1)x=0\\\alpha(e^x-1)\quad&x=0x=0αexx=0\\\alphae^x\quad&x=0x0,x,alpha*(np.exp(x)-1))
- AF3 drmsd函数解读
qq_27390023
深度学习pytorch人工智能生物信息学python
drmsd(distanceRootMeanSquareDeviation,距离均方根偏差)函数在AlphaFold3的src.utils.validation_metrics模块中定义,用于计算两个蛋白质结构(或其他分子结构)之间的距离偏差。它衡量了两个结构的成对原子间距离差异,而不是直接比较原子坐标。这种度量方式比RMSD(RootMeanSquareDeviation,均方根偏差)更能反映全
- 神经网络常见激活函数 6-RReLU函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习机器学习pytorch激活函数
文章目录RReLU函数+导函数函数和导函数图像优缺点pytorch中的RReLU函数tensorflow中的RReLU函数RReLU随机修正线性单元:RandomizedLeakyReLU函数+导函数RReLU函数RReLU={xx≥0axx=0,inputs,alpha*inputs)#创建RReLU激活函数层rrelu=RReLU()#生成随机输入x=tf.random.normal([2])
- 39. I2C实验
lljss2020
LinuxLinux
一、IIC协议详解1、ALPHA开发板上有个AP3216C,这是一个IIC接口的器件,这是一个环境光传感器。AP3216C连接到了I2C1上:I2C1_SCL:使用的是UART4_TXD这个IO,复用位ALT2I2C1_SDA:使用的是UART4_RXD这个IO。复用为ALT22、I2C分为SCL和SDA,这两个必须要接上拉电阻到VCC,比如3.3V,一般是4.7K上拉电阻。3、I2C总线支持多从
- z变换的性质
-nightingale
离散时间傅立叶变换
Z域变换的主要性质复频域(z域)变换的性质大多与拉普拉斯变换的性质相似,其与k域有不可分割的关系。复频域(z域)变换的性质既适用于单边z变换,也适用双边z变换,其性质有九条。其中标出来的性质是比较重要的。1.线性性质若f1(k)↔F1(z),α10,则f(k±m)↔z±mF(z),αα(α为正实数)f(k)\leftrightarrowF(z),|z|>\alpha(\alpha为正实数)f(k)
- 机器学习数学基础:18.向量组及其线性组合
@心都
机器学习数学基础机器学习概率论线性代数
向量组与线性表示:案例与教程详解一、基础概念(一)向量组向量组是若干同位数列向量组成的集合。比如在平面直角坐标系中,向量组{α⃗1=[10],α⃗2=[01]}\{\vec{\alpha}_1\=\begin{bmatrix}1\\0\end{bmatrix},\vec{\alpha}_2\=\begin{bmatrix}0\\1\end{bmatrix}\}{α1=[10],α2=[01]},这
- 机器学习数学基础:19.线性相关与线性无关
@心都
机器学习数学基础机器学习概率论线性代数
一、线性相关与线性无关的定义(一)线性相关想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组α⃗1,α⃗2,⋯ ,α⃗m\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_mα1,α2,⋯,αm,如果能找到不全为零的数k1,k2,⋯ ,kmk_1,k_2,\cdots,k_mk1,k2,⋯,km,让k1α⃗1+k2α⃗2
- 给bmp和png,设置BLENDFUNCTION的AlphaFormat不同参数的效果
wuchen1004
MFC图片按钮设置
BLENDFUNCTION是AlphaBlend用控制透明效果的重要参数。选择一个32位的png图片,设置AlphaFormat为AC_SRC_ALPHA,效果如上图。选择一个32位的png图片,设置AlphaFormat为0,效果如上图。选择一个24位的bmp图片,设置AlphaFormat为0,效果如上图。选择一个24位的bmp图片,设置AlphaFormat为AC_SRC_ALPHA,效果如
- 40. SPI实验
lljss2020
Linuxlinux
一、SPI协议详解1、SPI相比I2C最大的优势有两点:一个是速度快,最高可以大几十M,甚至上百MHz,第二个就是SPI是个全双工。2、SPI接口和I2C一样,一个SPI接口可以连接多个SPI外设,SPI通过CS引脚/数据线,片选引脚来选择和哪个SPI外设通信。SPI通信前先将指定的SPI外设对应的CS引脚拉低来选中此设备。3、ALPHA开发板上通过ECSPI3接口连接了一个6轴传感器,引脚如下:
- AKI跨语言调用库神助攻C/C++代码迁移至HarmonyOS NEXT
harmonyos
随着HarmonyOSNEXT的发布,越来越多的应用加速推进鸿蒙化。在这一过程中,如何高效迁移原有资产、简化跨语言调用,成为开发者和厂商面临的重要挑战。为解决这一痛点,一款名为AKI(AlphaKernelInteracting)的开源三方库应运而生,它通过高效封装跨语言调用接口,帮助开发者将C/C++代码快速迁移至HarmonyOSNEXT。凭借卓越的兼容性,AKI已成为厂商与开发者打造鸿蒙原生
- 前向概率和后向概率
苏西月
概率论机器学习人工智能
1.前向概率和后向概率的定义前向概率αt(i)\alpha_t(i)αt(i):表示从初始状态q0q_0q0出发,经过ttt步达到状态qiq_iqi,并且生成观测序列O1,O2,…,OtO_1,O_2,\dots,O_tO1,O2,…,Ot的概率。αt(i)=P(O1,O2,…,Ot,qt=i∣λ)\alpha_t(i)=P(O_1,O_2,\dots,O_t,q_t=i|\lambda)αt(i
- pyparsing 与 regex 结合表达汉字等Unicode字符(qbit)
正则表达式
前言技术栈python3.11.8pyparsing3.2.1regex2024.11.6测试案例测试代码#encoding:utf-8#author:qbit#date:2025-02-05#summary:使用pyparsing和sympy化简与或非逻辑表达式importpyparsingasppimportregex#greet=pp.Word(pp.alphas)+","+pp.Regex
- C 语言标准库 - <ctype.h>
赔罪
C语言函数库c语言开发语言c语言函数库青少年编程clion
目录C语言isascii()函数:判断字符是否为ASCII码C语言isalnum()函数:判断字符是否为字母或数字C语言isalpha()函数:判断字符是否为英文字母C语言iscntrl()函数:判断字符是否为控制字符C语言isdigit()函数:判断字符是否为十进制数字C语言isgraph()函数:判断字符是否除空格外的可打印字符C语言islower()函数:判断字符是否为小写英文字母C语言is
- 开放寻址法
小海螺123
算法
开放寻址法开放寻址法的装载因子开放寻址法插入关键字查找关键字删除关键字开放寻址法探查序列的计算方法开放寻址法的装载因子 给定一个能存放n个元素的、具有m个槽位的哈希表T,采用开放寻址法时T的装载因子为:α=n/m,n≤m\alpha=n/m,n\leqmα=n/m,n≤m开放寻址法 解决哈希表(在一些文献中又称作散列表)冲突的方法有:链接法(chaining)和开放寻址法(openaddres
- Day33【AI思考】-函数求导过程 的优质工具和网站
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录**函数求导过程**的优质工具和网站**一、动态图形工具**1.**Desmos(网页端)**2.**GeoGebra(全平台)****二、分步推导工具**3.**WolframAlpha(网页/App)**4.**Symbolab(网页/App)****三、专项练习工具**5.**DerivativeCalculator(网页)**6.**Photomath(移动端)****四、编程工具
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。