以下链接是个人关于insightFace所有见解,如有错误欢迎大家指出,我会第一时间纠正,如有兴趣可以加QQ:944284742相互讨论技术。
人脸识别0-00:insightFace目录:https://blog.csdn.net/weixin_43013761/article/details/99646731:
这是本人项目的源码:https://github.com/944284742/1.FaceRecognition
其中script目录下的文件为本人编写,主要用于适应自己的项目,可以查看该目录下的redeme文件。
既然我们想训练数据,那么我们当然需要有了数据才能训练,数据的制作过程后续才为大家讲解,为了尽快的体验训练的这个过程,我们先使用作者给我们制作好的数据:
https://github.com/deepinsight/insightface/wiki/Dataset-Zoo
本人使用的数据是UMDFace (8K ids/0.37M images) [3],这样应该是作者提供最小的数据了。在这里,我们只是了解一下训练的步骤,所以没必要弄太大的数据。下载完成之后,复制一分源码\recognition\sample_config.py改名为config.py,其目的是为了不更改sample_config的配置。
复制完成之后,修改config.py文件,首先指定训练数据的路径,如本人修改如下:
dataset.emore.dataset_path = '../../../2.dataset/1.officialData/1.traindata/faces_umd'
dataset.emore.num_classes = 180855
其中的180855来自训练数据faces_umd文件夹中的property文件,代表训练数据人脸id的个数。完成上为配置后,我们还可以指定预训练模型,本人修改如下:
#default.pretrained = ''
default.pretrained = '../models/model-y1-test2/model'
配置完成之后,我们就可以运行程序了,当然我们还要指定一些参数,本人在pycharm中配置如下:
--network y1 --loss arcface --dataset emore
注意一个点,如果配置不是很好,修改config.py中的default.per_batch_size,本人设置为48,其代表的是每个GPU的batch_size,如你有4个GPU,则总共的batch_size为4*48=192。
如果你选择的数据集很小,和我一样,你会发现损失在逐渐减少,但是如果你使用很大的训练的数据集,那么等待损失减小是一个漫长的过程。下面可是讲解如何制作自己的训练集数据。
为了简单方便,我们就以lfw数据集为例子,下载链接:
LFW:http://vis-www.cs.umass.edu/lfw/index.html#download
下载完成之后,我们首先是需要检测人脸,检测人脸最好的肯定是使用RetinaFace(开源中最好的人脸检测),但是由于本人还没有去了解,所以我们使用MTCNN,该人脸检测在insightFace源码中已经有实现,即insightface-master\src\align\align_my.py(该文件为本人改写,源码不知道怎么去设置人脸矫正,除了修改该文件,似乎还要修改detect_face.py,才能进行人脸矫正,大家可以通过拿到我的源码进行对比)文件,其使用的方式十分的简单,指定输入目录,输出目录和图像大小即可。如本人设置如下:
--input- dirD:\03.work\02.development\04.PaidOn\1.FaceRecognition\2.Dataset\1.OfficialData\2.testdata\lfw
--output-dir dirD:\03.work\02.development\04.PaidOn\1.FaceRecognition\2.Dataset\1.OfficialData\2.testdata\lfw_112x112
--image-size 112,112
运行之后,可以看到输出目录中,裁剪出所有人脸,并且变换大小为112*112大小。注意,需要修改一行代码,如下:
# fimage.image_path.split('/')
_paths = fimage.image_path.replace('\\','/').split('/')
完成上述数据准备之后,我们将生成rec文件,源码中提供了insightface-master\src\data\face2rec2.py文件,但是在制作过程中,需要一个.lst文件,所以执行会报错的,为了大家的方便,我这里有一个脚本im2rec.py(在本人源码script下面),大家复制即可:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import print_function
import os
import sys
curr_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(curr_path, "../python"))
import mxnet as mx
import random
import argparse
import cv2
import time
import traceback
try:
import multiprocessing
except ImportError:
multiprocessing = None
def list_image(root, recursive, exts):
"""Traverses the root of directory that contains images and
generates image list iterator.
Parameters
----------
root: string
recursive: bool
exts: string
Returns
-------
image iterator that contains all the image under the specified path
"""
i = 0
if recursive:
cat = {
}
for path, dirs, files in os.walk(root, followlinks=True):
dirs.sort()
files.sort()
for fname in files:
fpath = os.path.join(path, fname)
suffix = os.path.splitext(fname)[1].lower()
if os.path.isfile(fpath) and (suffix in exts):
if path not in cat:
cat[path] = len(cat)
yield (i, os.path.relpath(fpath, root), cat[path])
i += 1
for k, v in sorted(cat.items(), key=lambda x: x[1]):
print(os.path.relpath(k, root), v)
else:
for fname in sorted(os.listdir(root)):
fpath = os.path.join(root, fname)
suffix = os.path.splitext(fname)[1].lower()
if os.path.isfile(fpath) and (suffix in exts):
yield (i, os.path.relpath(fpath, root), 0)
i += 1
def write_list(path_out, image_list):
"""Hepler function to write image list into the file.
The format is as below,
integer_image_index \t float_label_index \t path_to_image
Note that the blank between number and tab is only used for readability.
Parameters
----------
path_out: string
image_list: list
"""
with open(path_out, 'w') as fout:
for i, item in enumerate(image_list):
line = '%d\t' % item[0]
for j in item[2:]:
line += '%f\t' % j
line += '%s\n' % item[1]
fout.write(line)
def make_list(args):
"""Generates .lst file.
Parameters
----------
args: object that contains all the arguments
"""
image_list = list_image(args.root, args.recursive, args.exts)
image_list = list(image_list)
if args.shuffle is True:
random.seed(100)
random.shuffle(image_list)
N = len(image_list)
chunk_size = (N + args.chunks - 1) // args.chunks
for i in range(args.chunks):
chunk = image_list[i * chunk_size:(i + 1) * chunk_size]
if args.chunks > 1:
str_chunk = '_%d' % i
else:
str_chunk = ''
sep = int(chunk_size * args.train_ratio)
sep_test = int(chunk_size * args.test_ratio)
if args.train_ratio == 1.0:
write_list(args.prefix + str_chunk + '.lst', chunk)
else:
if args.test_ratio:
write_list(args.prefix + str_chunk + '_test.lst', chunk[:sep_test])
if args.train_ratio + args.test_ratio < 1.0:
write_list(args.prefix + str_chunk + '_val.lst', chunk[sep_test + sep:])
write_list(args.prefix + str_chunk + '_train.lst', chunk[sep_test:sep_test + sep])
def read_list(path_in):
"""Reads the .lst file and generates corresponding iterator.
Parameters
----------
path_in: string
Returns
-------
item iterator that contains information in .lst file
"""
with open(path_in) as fin:
while True:
line = fin.readline()
if not line:
break
line = [i.strip() for i in line.strip().split('\t')]
line_len = len(line)
# check the data format of .lst file
if line_len < 3:
print('lst should have at least has three parts, but only has %s parts for %s' % (line_len, line))
continue
try:
item = [int(line[0])] + [line[-1]] + [float(i) for i in line[1:-1]]
except Exception as e:
print('Parsing lst met error for %s, detail: %s' % (line, e))
continue
yield item
def image_encode(args, i, item, q_out):
"""Reads, preprocesses, packs the image and put it back in output queue.
Parameters
----------
args: object
i: int
item: list
q_out: queue
"""
fullpath = os.path.join(args.root, item[1])
if len(item) > 3 and args.pack_label:
header = mx.recordio.IRHeader(0, item[2:], item[0], 0)
else:
header = mx.recordio.IRHeader(0, item[2], item[0], 0)
if args.pass_through:
try:
with open(fullpath, 'rb') as fin:
img = fin.read()
s = mx.recordio.pack(header, img)
q_out.put((i, s, item))
except Exception as e:
traceback.print_exc()
print('pack_img error:', item[1], e)
q_out.put((i, None, item))
return
try:
img = cv2.imread(fullpath, args.color)
except:
traceback.print_exc()
print('imread error trying to load file: %s ' % fullpath)
q_out.put((i, None, item))
return
if img is None:
print('imread read blank (None) image for file: %s' % fullpath)
q_out.put((i, None, item))
return
if args.center_crop:
if img.shape[0] > img.shape[1]:
margin = (img.shape[0] - img.shape[1]) // 2
img = img[margin:margin + img.shape[1], :]
else:
margin = (img.shape[1] - img.shape[0]) // 2
img = img[:, margin:margin + img.shape[0]]
if args.resize:
if img.shape[0] > img.shape[1]:
newsize = (args.resize, img.shape[0] * args.resize // img.shape[1])
else:
newsize = (img.shape[1] * args.resize // img.shape[0], args.resize)
img = cv2.resize(img, newsize)
try:
s = mx.recordio.pack_img(header, img, quality=args.quality, img_fmt=args.encoding)
q_out.put((i, s, item))
except Exception as e:
traceback.print_exc()
print('pack_img error on file: %s' % fullpath, e)
q_out.put((i, None, item))
return
def read_worker(args, q_in, q_out):
"""Function that will be spawned to fetch the image
from the input queue and put it back to output queue.
Parameters
----------
args: object
q_in: queue
q_out: queue
"""
while True:
deq = q_in.get()
if deq is None:
break
i, item = deq
image_encode(args, i, item, q_out)
def write_worker(q_out, fname, working_dir):
"""Function that will be spawned to fetch processed image
from the output queue and write to the .rec file.
Parameters
----------
q_out: queue
fname: string
working_dir: string
"""
pre_time = time.time()
count = 0
fname = os.path.basename(fname)
fname_rec = os.path.splitext(fname)[0] + '.rec'
fname_idx = os.path.splitext(fname)[0] + '.idx'
record = mx.recordio.MXIndexedRecordIO(os.path.join(working_dir, fname_idx),
os.path.join(working_dir, fname_rec), 'w')
buf = {
}
more = True
while more:
deq = q_out.get()
if deq is not None:
i, s, item = deq
buf[i] = (s, item)
else:
more = False
while count in buf:
s, item = buf[count]
del buf[count]
if s is not None:
record.write_idx(item[0], s)
if count % 1000 == 0:
cur_time = time.time()
print('time:', cur_time - pre_time, ' count:', count)
pre_time = cur_time
count += 1
def parse_args():
"""Defines all arguments.
Returns
-------
args object that contains all the params
"""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Create an image list or \
make a record database by reading from an image list')
parser.add_argument('--prefix', default='/data/zwh/1.FaceRecognition/2.Dataset/2.PaidOnData/2.DataDivi/1.Shunde/5.dataset_divi/pack3/train/train', help='prefix of input/output lst and rec files.')
parser.add_argument('--root', default='/data/zwh/1.FaceRecognition/2.Dataset/2.PaidOnData/2.DataDivi/1.Shunde/5.dataset_divi/pack3/train/' ,help='path to folder containing images.')
cgroup = parser.add_argument_group('Options for creating image lists')
cgroup.add_argument('--list', default=False,
help='If this is set im2rec will create image list(s) by traversing root folder\
and output to <prefix>.lst.\
Otherwise im2rec will read <prefix>.lst and create a database at <prefix>.rec')
cgroup.add_argument('--exts', nargs='+', default=['.jpeg', '.jpg', '.png','.bmp'],
help='list of acceptable image extensions.')
cgroup.add_argument('--chunks', type=int, default=1, help='number of chunks.')
cgroup.add_argument('--train-ratio', type=float, default=1.0,
help='Ratio of images to use for training.')
cgroup.add_argument('--test-ratio', type=float, default=0,
help='Ratio of images to use for testing.')
cgroup.add_argument('--recursive', default=True,
help='If true recursively walk through subdirs and assign an unique label\
to images in each folder. Otherwise only include images in the root folder\
and give them label 0.')
cgroup.add_argument('--no-shuffle', dest='shuffle', action='store_false',
help='If this is passed, \
im2rec will not randomize the image order in <prefix>.lst')
rgroup = parser.add_argument_group('Options for creating database')
rgroup.add_argument('--pass-through', action='store_true',
help='whether to skip transformation and save image as is')
rgroup.add_argument('--resize', type=int, default=0,
help='resize the shorter edge of image to the newsize, original images will\
be packed by default.')
rgroup.add_argument('--center-crop', action='store_true',
help='specify whether to crop the center image to make it rectangular.')
rgroup.add_argument('--quality', type=int, default=95,
help='JPEG quality for encoding, 1-100; or PNG compression for encoding, 1-9')
rgroup.add_argument('--num-thread', type=int, default=1,
help='number of thread to use for encoding. order of images will be different\
from the input list if >1. the input list will be modified to match the\
resulting order.')
rgroup.add_argument('--color', type=int, default=1, choices=[-1, 0, 1],
help='specify the color mode of the loaded image.\
1: Loads a color image. Any transparency of image will be neglected. It is the default flag.\
0: Loads image in grayscale mode.\
-1:Loads image as such including alpha channel.')
rgroup.add_argument('--encoding', type=str, default='.bmp', choices=['.jpg', '.png','.bmp'],
help='specify the encoding of the images.')
rgroup.add_argument('--pack-label', action='store_true',
help='Whether to also pack multi dimensional label in the record file')
args = parser.parse_args()
args.prefix = os.path.abspath(args.prefix)
args.root = os.path.abspath(args.root)
return args
if __name__ == '__main__':
args = parse_args()
# if the '--list' is used, it generates .lst file
if args.list:
make_list(args)
# otherwise read .lst file to generates .rec file
else:
if os.path.isdir(args.prefix):
working_dir = args.prefix
else:
working_dir = os.path.dirname(args.prefix)
files = [os.path.join(working_dir, fname) for fname in os.listdir(working_dir)
if os.path.isfile(os.path.join(working_dir, fname))]
count = 0
for fname in files:
if fname.startswith(args.prefix) and fname.endswith('.lst'):
print('Creating .rec file from', fname, 'in', working_dir)
count += 1
image_list = read_list(fname)
# -- write_record -- #
if args.num_thread > 1 and multiprocessing is not None:
q_in = [multiprocessing.Queue(1024) for i in range(args.num_thread)]
q_out = multiprocessing.Queue(1024)
# define the process
read_process = [multiprocessing.Process(target=read_worker, args=(args, q_in[i], q_out)) \
for i in range(args.num_thread)]
# process images with num_thread process
for p in read_process:
p.start()
# only use one process to write .rec to avoid race-condtion
write_process = multiprocessing.Process(target=write_worker, args=(q_out, fname, working_dir))
write_process.start()
# put the image list into input queue
for i, item in enumerate(image_list):
q_in[i % len(q_in)].put((i, item))
for q in q_in:
q.put(None)
for p in read_process:
p.join()
q_out.put(None)
write_process.join()
else:
print('multiprocessing not available, fall back to single threaded encoding')
try:
import Queue as queue
except ImportError:
import queue
q_out = queue.Queue()
fname = os.path.basename(fname)
fname_rec = os.path.splitext(fname)[0] + '.rec'
fname_idx = os.path.splitext(fname)[0] + '.idx'
record = mx.recordio.MXIndexedRecordIO(os.path.join(working_dir, fname_idx),
os.path.join(working_dir, fname_rec), 'w')
cnt = 0
pre_time = time.time()
for i, item in enumerate(image_list):
image_encode(args, i, item, q_out)
if q_out.empty():
continue
_, s, _ = q_out.get()
record.write_idx(item[0], s)
if cnt % 1000 == 0:
cur_time = time.time()
print('time:', cur_time - pre_time, ' count:', cnt)
pre_time = cur_time
cnt += 1
if not count:
print('Did not find and list file with prefix %s'%args.prefix)
该脚本不仅能生成rec文件,还能生成.lst文件,这样就省去了不必要的麻烦,注意,该脚本需要执行两次,第一次生成.lst文件,第二次生成rec文件,如本人执行两次分别如下:
python3 im2rec.py --list --recursive ../../datasets/lfw/train ../../datasets/lfw2
…/…/datasets/lfw/lfw输出目录最后lfw代表list的名字,不用加后缀。
…/…/datasets/lfw2图片目录
python3 im2rec.py ../../datasets/lfw/train.lst ../../datasets/lfw2
#生成rec文件,把–list去掉
…/…/datasets/lfw/train.lst代表lst的目录
…/…/datasets/lfw2原图存在的目录
这样我们就能生成训练数据了,下小节为大家检测测试数据或者说目标数据的,即bin文件的制作过程。
如果上述过程出现了意外,请直接根据github下载本人的文件,使用script目录下的im2rec.py 文件,script下的文件都为本人编写或者改写,项目已经完成。能保证没有错误