libhv是c++编写HTTP API 服务端/客户端最简单的库,没有之一
具有如下特性:
Windows, Linux, Mac
)https
RESTful API
application/json、application/x-www-form-urlencoded、multipart/form-data
web service
文件服务和indexof service
目录服务libhv是一个跨平台的类似libevent、libev、libuv
的异步IO事件循环库,但提供了更加简单的API接口和更加丰富的协议(包括http、ftp、smtp、dns、icmp
等)。
libhv
已广泛实用在公司的IOT
平台、http API
服务之中,正确性、稳定性、可扩展性、性能都有保证,完全开源,请放心使用。
项目地址
码云镜像
QQ技术交流群:739352073
libhv每日一学博文
使用的是centos7
$ git clone https://github.com/ithewei/libhv.git
$ cd libhv/
$ sudo make install # 这和CMakeList.txt里面的内容有关
mkdir -p 2>/dev/null /usr/local/include/hv
cp -r 2>/dev/null include/hv/* /usr/local/include/hv
cp -r 2>/dev/null lib/libhv.a lib/libhv.so /usr/local/lib
ps:
mkdir -p : 递归创建目录
cp -r : 递归复制
接收post 请求
2、编写CMakeList.txt
cmake_minimum_required(VERSION 3.16)
project(libhv_test)
set(CMAKE_CXX_STANDARD 11)
#添加头文件搜索路径
include_directories(/usr/local/include/hv)
#添加库文件搜索路径
link_directories(/usr/local/lib)
#用于将当前目录下的所有源文件的名字保存在变量 DIR_SRCS 中
add_executable(libhv_test main.cpp)
#在这里根据名字boost_thread去寻找libboost_thread.a文件
target_link_libraries(libhv_test -lhv)
3、编写程序
#include "HttpServer.h"
int http_api_echo(HttpRequest* req, HttpResponse* res) {
res->body = req->body;
return 0;
}
int main() {
HttpService service;
service.base_url = "/v1/api";
service.AddApi("/echo", HTTP_POST, http_api_echo);
http_server_t server;
server.port = 8080;
server.service = &service;
http_server_run(&server);
return 0;
}
4、curl测试
# curl -H "Content-Type:application/json" -XPOST http://localhost:8080/v1/api/echo -d '{ "id":"3", "provinceId":"3", "cityName":"zhuhai", "description":"live in zhuhai"}'
{
"id":"3", "provinceId":"3", "cityName":"zhuhai", "description":"live in
发送post请求
1、使用CLion创建一个新工程
2、编写CMakeList.txt
和第一个工程中差不多,只是把工程名改了
3、编写程序
#include "http_client.h"
int main() {
HttpRequest req;
req.method = HTTP_POST;
req.url = "http://localhost:8080/v1/api/echo";
req.body = "hello world";
HttpResponse res;
int ret = http_client_send(&req, &res);
if (ret != 0){
printf("* Failed:%s:%d\n", http_client_strerror(ret), ret);
}else{
printf("%s\n", res.Dump(true, true).c_str());
}
return 0;
}
4、返回结果
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 11
Content-Type: text/plain
Date: Fri, 17 Jul 2020 07:56:39 GMT
Server: httpd/1.20.7.17
hello world
Process finished with exit code 0
json.hpp
使用这个头文件是对nlohmann
的封装,可以单独拿出来使用
using namespace nlohmann;
如果你想创建一个这样的对象
{
"pi": 3.141,
"happy": true,
"name": "Niels",
"nothing": null,
"answer": {
"everything": 42
},
"list": [1, 0, 2],
"object": {
"currency": "USD",
"value": 42.99
}
}
可以这样写:
// 创建一个空结构(null)
json j;
// 添加一个数值,存为 double
j["pi"] = 3.141;
// 添加一个布尔值,存为 bool
j["happy"] = true;
// 添加一个字符串,存为 std::string
j["name"] = "Niels";
// 添加另一个空对象,使用 nullptr
j["nothing"] = nullptr;
// 添加一个对象内的对象
j["answer"]["everything"] = 42;
// 添加一个数组,存为 std::vector
j["list"] = {
1, 0, 2};
// 添加另一个对象
j["object"] = {
{
"currency", "USD"}, {
"value", 42.99}};
还可以这样写
json j2 = {
{
"pi", 3.141},
{
"happy", true},
{
"name", "Niels"},
{
"nothing", nullptr},
{
"answer", {
{
"everything", 42}
}},
{
"list", {
1, 0, 2}},
{
"object", {
{
"currency", "USD"},
{
"value", 42.99}
}}
};
_json
可以创建一个json对象// 从字符串字面量创建对象
json j = "{\"happy\": true, \"pi\": 3.141}"_json;
// 最好是使用原始字符串字面量
auto j2 = R"({"happy": true, "pi": 3.141})"_json;
// 显式地分析
auto j3 = json::parse("{\"happy\": true, \"pi\": 3.141}");
json j = "{\"happy\": true, \"pi\": 3.141}"_json;
// 显式地转换至字符串
std::string s = j.dump();
std::cout << s << std::endl; // {"happy":true,"pi":3.141}
// 传入缩进空格数,使用良好的打印形式进行序列化
std::cout << j.dump(4) << std::endl;
/*
{
"happy": true,
"pi": 3.141
}
*/
注意: 该库仅支持UTF-8,当你在库中存储不同编码的字符串时,调用
dump
可能会引发异常
// 反序列化自标准输入
json j;
std::cin >> j;
// 序列化至标准输出
std::cout << j;
// 设置良好打印形式所需的缩进
std::cout << std::setw(4) << j << std::endl;
// 读入一个 JSON 文件
std::ifstream i("file.json");
json j;
i >> j;
// 将美化的 JSON 写入另一个文件
std::ofstream o("pretty.json");
o << std::setw(4) << j << std:endl;
std::vector<std::uint8_t> v = {
't', 'r', 'u', 'e'};
json j = json::parse(v.begin(), v.end());
json j1 = json::parse(v);
// 使用 push_back 创建一个数组
json j;
j.push_back("foo");
j.push_back(1);
j.push_back(true);
// 也可以使用 emplace_back
j.emplace_back(1.78);
// 在数组上进行迭代
for (json::iterator it = j.begin(); it != j.end(); ++it) {
std::cout << *it << '\n';
}
// 基于范围的 for 循环
for (auto& element : j) {
std::cout << element << '\n';
}
// 访问器 getter/setter
const std::string tmp = j[0];
j[1] = 42;
bool foo = j.at(2);
// 比较
j == "[\"foo\", 1, true]"_json; // true
// 其他东东
j.size(); // 3 条
j.empty(); // false
j.type(); // json::value_t::array
j.clear(); // 数组再次为空
// 便利的类型检测器
j.is_null();
j.is_boolean();
j.is_number();
j.is_object();
j.is_array();
j.is_string();
// 创建一个 JSON 对象
json o;
o["foo"] = 23;
o["bar"] = false;
o["baz"] = 3.141;
// 也可以使用 emplace
o.emplace("weather", "sunny");
// 为对象指定迭代成员函数
for (json::iterator it = o.begin(); it != o.end(); ++it) {
std::cout << it.key() << " : " << it.value() << "\n";
}
// 查找一个条目
if (o.find("foo") != o.end()) {
// 找到键为 "foo" 的一个条目
}
// 使用计数 count()
int foo_present = o.count("foo"); // 1
int fob_present = o.count("fob"); // 0
// 删除条目
o.erase("foo");
std::array
,std::vector
, std::deque
,std::forward_list
,std::list
,都可以用来构建JSON数组。同样,关联化容器,包括std::set
,std::multiset
,std::unordered_set
,std::unordered_multiset
,也可以用来构建JSON数组。std::vector<int> c_vector {
1, 2, 3, 4};
json j_vec(c_vector);
std::deque<double> c_deque {
1.2, 2.3, 3.4, 5.6};
json j_deque(c_deque);
std::list<bool> c_list {
true, true, false, true};
json j_list(c_list);
std::forward_list<int64_t> c_flist {
12345678909876, 23456789098765, 34567890987654, 45678909876543};
json j_flist(c_flist);
std::array<unsigned long, 4> c_array {
{
1, 2, 3, 4}};
json j_array(c_array);
std::set<std::string> c_set {
"one", "two", "three", "four", "one"};
json j_set(c_set);
std::unordered_set<std::string> c_uset {
"one", "two", "three", "four", "one"};
json j_uset(c_uset);
std::multiset<std::string> c_mset {
"one", "two", "one", "four"};
json j_mset(c_mset);
std::unordered_multiset<std::string> c_umset {
"one", "two", "one", "four"};
json j_umset(c_umset);
std::map<std::string, int> c_map {
{
"one", 1}, {
"two", 2}, {
"three", 3}};
json j_map(c_map);
std::unordered_map<const char*, double> c_umap {
{
"one", 1.2}, {
"two", 2.3}, {
"three", 3.4}};
json j_umap(c_umap);
std::multimap<std::string, bool> c_mmap {
{
"one", true}, {
"two", true}, {
"three", false}, {
"three", true}};
json j_mmap(c_mmap);
std::unordered_multimap<std::string, bool> c_ummap {
{
"one", true}, {
"two", true}, {
"three", false}, {
"three", true}};
json j_ummap(c_ummap);
json对象的类型是由表达式所决定的,所存储的值隐式的进行转换。比如:
// 字符串
std::string s1 = "Hello, world!";
json js = s1;
std::string s2 = js;
// 布尔值
bool b1 = true;
json jb = b1;
bool b2 = jb;
// 数值
int i = 42;
json jn = i;
double f = jn;
当然,也可以显示的请求数据
std::string vs = js.get<std::string>();
bool vb = jb.get<bool>();
int vi = jn.get<int>();
不仅仅是STL容器和标量类型,所有类型都可以序列化到JSON。比如,创建一个ns::person
结果
namespace ns {
// 一个简单的结构,为 person 建模
struct person {
std::string name;
std::string address;
int age;
};
}
相互转换:
ns::person p = {
"Ned Flanders", "744 Evergreen Terrace", 60};
// 转换至 JSON:将每个值拷贝至 JSON 对象
json j;
j["name"] = p.name;
j["address"] = p.address;
j["age"] = p.age;
// 转换自 JSON:从 JSON 对象中拷贝每个值
ns::person p {
j["name"].get<std::string>(),
j["address"].get<std::string>(),
j["age"].get<int>()
};
当然,还有更好的方法:
// 创建 person 结构
ns::person p {
"Ned Flanders", "744 Evergreen Terrace", 60};
// 转换:person → json
json j = p;
std::cout << j << std::endl;
// 转换:json → person
ns::person p2 = j;
要让那么的代码工作,只需要提供两个函数
namespace ns {
void to_json(json& j, const person& p) {
j = json{
{
"name", p.name}, {
"address", p.address}, {
"age", p.age}};
}
void from_json(const json& j, person& p) {
p.name = j.at("name").get<std::string>();
p.name = j.at("address").get<std::string>();
p.name = j.at("age").get<int>();
}
}
如果想要进行网络数据交换,必须转换为二进制格式,因此,提供了CBOR
和MessagePack
功能,使得可以将JSON数据编码成字节向量,会在将字节向量解码成JSON数组
// 创建一个 JSON 数据
json j = R"({"compact": true, "schema": 0})"_json;
// 序列化至 CBOR
std::vector<std::uint8_t> v_cbor = json::to_cbor(j);
// v_cbor => 0xa2, 0x67, 0x63, 0x6f, 0x6d, 0x70, 0x61, 0x63, 0x74, 0xf5, 0x66, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x00
// 从 CBOR 中返回 JSON
json j_from_cbor = json::from_cbor(v_cbor);
// 序列化至 MessagePack
std::vector<std::uint8_t> v_msgpack = json::to_msgpack(j);
// v_msgpack => 0x82, 0xa7, 0x63, 0x6f, 0x6d, 0x70, 0x61, 0x63, 0x74, 0xc3, 0xa6, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x00
// 从 MessagePack 中返回 JSON
json j_from_msgpack = json::from_msgpack(v_msgpack);
参考
0、作用
1、使用CLion创建一个新工程
2、编写CMakeList.txt
和第一个工程中差不多,只是把工程名改了
3、编写程序
hmain_test.cpp
#include "hv.h"
#include "hmain.h"
#include "iniparser.h"
typedef struct conf_ctx_s {
IniParser* parser;
int loglevel;
int worker_processes;
int worker_threads;
int port;
} conf_ctx_t;
conf_ctx_t g_conf_ctx;
inline void conf_ctx_init(conf_ctx_t* ctx) {
ctx->parser = new IniParser;
ctx->loglevel = LOG_LEVEL_DEBUG;
ctx->worker_processes = 0;
ctx->worker_threads = 0;
ctx->port = 0;
}
static void print_version();
static void print_help();
static int parse_confile(const char* confile);
static void worker_fn(void* userdata);
// short options
static const char options[] = "hvc:ts:dp:";
// long options
static const option_t long_options[] = {
{
'h', "help", NO_ARGUMENT},
{
'v', "version", NO_ARGUMENT},
{
'c', "confile", REQUIRED_ARGUMENT},
{
't', "test", NO_ARGUMENT},
{
's', "signal", REQUIRED_ARGUMENT},
{
'd', "daemon", NO_ARGUMENT},
{
'p', "port", REQUIRED_ARGUMENT}
};
static const char detail_options[] = R"(
-h|--help Print this information
-v|--version Print version
-c|--confile Set configure file, default etc/{program}.conf
-t|--test Test Configure file and exit
-s|--signal Send to process,
=[start,stop,restart,status,reload]
-d|--daemon Daemonize
-p|--port Set listen port
)" ;
void print_version() {
printf("%s version %s\n", g_main_ctx.program_name, hv_compile_version());
}
void print_help() {
printf("Usage: %s [%s]\n", g_main_ctx.program_name, options);
printf("Options:\n%s\n", detail_options);
}
int parse_confile(const char* confile) {
int ret = g_conf_ctx.parser->LoadFromFile(confile);
if (ret != 0) {
printf("Load confile [%s] failed: %d\n", confile, ret);
exit(-40);
}
// logfile
string str = g_conf_ctx.parser->GetValue("logfile");
if (!str.empty()) {
strncpy(g_main_ctx.logfile, str.c_str(), sizeof(g_main_ctx.logfile));
}
hlog_set_file(g_main_ctx.logfile);
// loglevel
const char* szLoglevel = g_conf_ctx.parser->GetValue("loglevel").c_str();
int loglevel = LOG_LEVEL_INFO;
if (stricmp(szLoglevel, "VERBOSE") == 0) {
loglevel = LOG_LEVEL_VERBOSE;
} else if (stricmp(szLoglevel, "DEBUG") == 0) {
loglevel = LOG_LEVEL_DEBUG;
} else if (stricmp(szLoglevel, "INFO") == 0) {
loglevel = LOG_LEVEL_INFO;
} else if (stricmp(szLoglevel, "WARN") == 0) {
loglevel = LOG_LEVEL_WARN;
} else if (stricmp(szLoglevel, "ERROR") == 0) {
loglevel = LOG_LEVEL_ERROR;
} else if (stricmp(szLoglevel, "FATAL") == 0) {
loglevel = LOG_LEVEL_FATAL;
} else if (stricmp(szLoglevel, "SILENT") == 0) {
loglevel = LOG_LEVEL_SILENT;
} else {
loglevel = LOG_LEVEL_INFO;
}
g_conf_ctx.loglevel = loglevel;
hlog_set_level(loglevel);
// log_filesize
str = g_conf_ctx.parser->GetValue("log_filesize");
if (!str.empty()) {
int num = atoi(str.c_str());
if (num > 0) {
// 16 16M 16MB
const char* p = str.c_str() + str.size() - 1;
char unit;
if (*p >= '0' && *p <= '9') unit = 'M';
else if (*p == 'B') unit = *(p-1);
else unit = *p;
unsigned long long filesize = num;
switch (unit) {
case 'K': filesize <<= 10; break;
case 'M': filesize <<= 20; break;
case 'G': filesize <<= 30; break;
default: filesize <<= 20; break;
}
hlog_set_max_filesize(filesize);
}
}
// log_remain_days
str = g_conf_ctx.parser->GetValue("log_remain_days");
if (!str.empty()) {
hlog_set_remain_days(atoi(str.c_str()));
}
// log_fsync
str = g_conf_ctx.parser->GetValue("log_fsync");
if (!str.empty()) {
logger_enable_fsync(hlog, getboolean(str.c_str()));
}
// first log here
hlogi("%s version: %s", g_main_ctx.program_name, hv_compile_version());
hlog_fsync();
// worker_processes
int worker_processes = 0;
str = g_conf_ctx.parser->GetValue("worker_processes");
if (str.size() != 0) {
if (strcmp(str.c_str(), "auto") == 0) {
worker_processes = get_ncpu();
hlogd("worker_processes=ncpu=%d", worker_processes);
}
else {
worker_processes = atoi(str.c_str());
}
}
g_conf_ctx.worker_processes = LIMIT(0, worker_processes, MAXNUM_WORKER_PROCESSES);
// worker_threads
int worker_threads = g_conf_ctx.parser->Get<int>("worker_threads");
g_conf_ctx.worker_threads = LIMIT(0, worker_threads, 16);
// port
int port = 0;
const char* szPort = get_arg("p");
if (szPort) {
port = atoi(szPort);
}
if (port == 0) {
port = g_conf_ctx.parser->Get<int>("port");
}
if (port == 0) {
printf("Please config listen port!\n");
exit(-10);
}
g_conf_ctx.port = port;
hlogi("parse_confile('%s') OK", confile);
return 0;
}
void master_init(void* userdata) {
#ifdef OS_UNIX
char proctitle[256] = {
0};
snprintf(proctitle, sizeof(proctitle), "%s: master process", g_main_ctx.program_name);
setproctitle(proctitle);
signal(SIGNAL_RELOAD, signal_handler);
#endif
}
void worker_init(void* userdata) {
#ifdef OS_UNIX
char proctitle[256] = {
0};
snprintf(proctitle, sizeof(proctitle), "%s: worker process", g_main_ctx.program_name);
setproctitle(proctitle);
signal(SIGNAL_RELOAD, signal_handler);
#endif
}
static void on_reload(void* userdata) {
hlogi("reload confile [%s]", g_main_ctx.confile);
parse_confile(g_main_ctx.confile);
}
int main(int argc, char** argv) {
// g_main_ctx
main_ctx_init(argc, argv);
if (argc == 1) {
print_help();
exit(10);
}
// int ret = parse_opt(argc, argv, options);
int ret = parse_opt_long(argc, argv, long_options, ARRAY_SIZE(long_options));
if (ret != 0) {
print_help();
exit(ret);
}
printf("---------------arg------------------------------\n");
printf("%s\n", g_main_ctx.cmdline);
for (auto& pair : g_main_ctx.arg_kv) {
printf("%s=%s\n", pair.first.c_str(), pair.second.c_str());
}
for (auto& item : g_main_ctx.arg_list) {
printf("%s\n", item.c_str());
}
printf("================================================\n");
printf("---------------env------------------------------\n");
for (auto& pair : g_main_ctx.env_kv) {
printf("%s=%s\n", pair.first.c_str(), pair.second.c_str());
}
printf("================================================\n");
// help
if (get_arg("h")) {
print_help();
exit(0);
}
// version
if (get_arg("v")) {
print_version();
exit(0);
}
// g_conf_ctx
conf_ctx_init(&g_conf_ctx);
const char* confile = get_arg("c");
if (confile) {
strncpy(g_main_ctx.confile, confile, sizeof(g_main_ctx.confile));
}
parse_confile(g_main_ctx.confile);
// test
if (get_arg("t")) {
printf("Test confile [%s] OK!\n", g_main_ctx.confile);
exit(0);
}
// signal
signal_init(on_reload);
const char* signal = get_arg("s");
if (signal) {
signal_handle(signal);
}
#ifdef OS_UNIX
// daemon
if (get_arg("d")) {
// nochdir, noclose
int ret = daemon(1, 1);
if (ret != 0) {
printf("daemon error: %d\n", ret);
exit(-10);
}
// parent process exit after daemon, so pid changed.
g_main_ctx.pid = getpid();
}
#endif
// pidfile
create_pidfile();
master_workers_run(worker_fn, (void*)(intptr_t)100L, g_conf_ctx.worker_processes, g_conf_ctx.worker_threads);
return 0;
}
void worker_fn(void* userdata) {
long num = (long)(intptr_t)(userdata);
while (1) {
printf("num=%ld pid=%ld tid=%ld\n", num, hv_getpid(), hv_gettid());
hv_delay(10000);
}
}
4、编写配置文件
libhv_test.conf
logfile=log
#worker_threads=4
worker_processes=auto
log_remain_days=30
5、编译并且命令行运行
$ ./libhv_test -c libhv_test.conf -p 8081
#include
#include "hthread.h"
#include "hmutex.h"
#include "htime.h"
hmutex_t mutex;
hcondvar_t cv;
int i = 1; //global
HTHREAD_ROUTINE(test_condvar1) {
while (i <= 9){
hmutex_lock(&mutex);
printf("call test_condvar1, id = %lu , i = %d\n", pthread_self(), i);
if(i %3 != 0){
// 3的倍数,prinft
hcondvar_wait(&cv, &mutex); // 不是3的倍数,那就等待,直到通知是3的倍数
std::cout << "test_condvar1: " << i << "\n";
}
hmutex_unlock(&mutex);
sleep(1);
}
}
HTHREAD_ROUTINE(test_condvar2) {
for(;i <= 9; i++){
hmutex_lock(&mutex);
printf("call test_condvar2, id = %lu , i = %d\n", pthread_self(), i);
if(i %3 == 0){
hcondvar_signal(&cv); // 当前线程并没有休眠/阻塞,还会执行下面的
}else{
std::cout << "test_condvar2: " << i << "\n";
}
hmutex_unlock(&mutex);
sleep(1);
}
}
int main(int argc, char* argv[]) {
hmutex_init(&mutex);
hcondvar_init(&cv);
printf("call main id = %lu \n", pthread_self());
hthread_t thread_condvar1 = hthread_create(test_condvar1, NULL);
hthread_t thread_condvar2 = hthread_create(test_condvar2, NULL);
hthread_join(thread_condvar2);
hmutex_destroy(&mutex);
hcondvar_destroy(&cv);
return 0;
}