Python迭代器生成器,私有变量及列表字典集合推导式(二)

1 python自省机制

这个是python一大特性,自省就是面向对象的语言所写的程序在运行时,能知道对象的类型,换句话说就是在运行时能获取对象的类型,比如通过 type(),dir(),getattr(),hasattr(),isinstance().

a = [1,2,3]
b = {
    'a':1,'b':2,'c':3}
c = True
print(type(a),type(b),type(c)) #   
print(isinstance(a,list))  # True

2 python中列表推导式,字典推导式,集合推导式

列表生成式 : 中括号括起来表示列表

(1)[exp for iter_var in iterable if_exp]
#工作过程:
1 迭代iterable中的每个元素,每次迭代都先判断if_exp表达式结果为真,如果为真则进行下一步,如果为假则进行下一次迭代;
2 把迭代结果赋值给iter_var,然后通过exp得到一个新的计算值;
3 最后把所有通过exp得到的计算值以一个新列表的形式返回。

#相当于这样的过程:
L = []
for iter_var in iterable:
    if_exp:
        L.append(exp)

#也可以循环嵌套
(2)[exp for iter_var_A in iterable_A for iter_var_B in iterable_B]
工作过程:
每迭代iterable_A中的一个元素,就把ierable_B中的所有元素都迭代一遍。

#相当于这样的过程:
L = []
for iter_var_A in iterable_A:
    for iter_var_B in iterable_B:
        L.append(exp)

字典推导式:大括号括起来,表示为字典

d = {key: value for (key, value) in iterable}

#快速更改字典key,value
mcase = {
    'a': 10, 'b': 34}
mcase_frequency = {v: k for k, v in mcase.items()}
print(mcase_frequency)
#  Output: {10: 'a', 34: 'b'}

集合推导式: 跟列表推导式也是类似的 唯一的区别在于它使用大括号{},表示结果为集合

squared = {x**2 for x in [1, 1, 2]}
print(squared)
# Output: set([1, 4])

3 Python中单下划线和双下划线

>>> class MyClass():
...     def __init__(self):
...             self.__superprivate = "Hello"
...             self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print(mc.__superprivate)  #私有变量不能直接访问
    #print(mc._Myclass__superprivate)  也可以访问,但是不建议这样访问
Traceback (most recent call last):
  File "", line 1, in 
AttributeError: myClass instance has no attribute '__superprivate'
>>> print(mc._semiprivate)
, world!
>>> print(mc.__dict__)
{
    '_MyClass__superprivate': 'Hello', '_semiprivate': ', world!'}
  1. __foo__: 一种约定,Python内部的名字,用来区别其他用户自定义的命名,以防冲突,就是例如__init__(),__del__(),__call__()这些特殊方法
  2. _foo: 一种约定,用来指定变量私有.程序员用来指定私有变量的一种方式.不能用from module import * 导入,其他方面和公有一样访问;
  3. __foo: 意义: 私有变量不能直接访问, 因为解析器用_classname__foo来代替这个名字,以区别和其他类相同的命名,它无法直接像公有成员一样随便访问,但是可以通过对象名._类名__xxx这样的方式可以访问,但是不建议这样来访问.

4 字符串格式化:%和.format

.format在许多方面看起来更便利.对于%最烦人的是它无法同时传递一个变量和元组.你可能会想下面的代码不会有什么问题:

"hi there %s" % name

但是,如果name恰好是(1,2,3),它将会抛出一个TypeError异常.为了保证它总是正确的,你必须这样做:

"hi there %s" % (name,)   # 提供一个单元素的数组而不是一个参数

但是有点丑 .format就没有这些问题.而且format可以实现模运算符(%)不能做的事

tu = (12,45,22222,103,6)
print('{0} {2} {1} {2} {3} {2} {4} {2}'.format(*tu))
#结果 12 22222 45 22222 103 22222 6 22222

另一点format()作为一个函数,可以用作其他函数的参数:

li = [12,45,78,784,2,69,1254,4785,984]
print(map('the number is {}'.format,li))  

from datetime import datetime,timedelta
once_upon_a_time = datetime(2010, 7, 1, 12, 0, 0)
delta = timedelta(days=13, hours=8,  minutes=20)

gen =(once_upon_a_time + x*delta for x in xrange(20))

print '\n'.join(map('{:%Y-%m-%d %H:%M:%S}'.format, gen))

2010-07-01 12:00:00
2010-07-14 20:20:00
2010-07-28 04:40:00
2010-08-10 13:00:00
2010-08-23 21:20:00
2010-09-06 05:40:00
2010-09-19 14:00:00
2010-10-02 22:20:00
2010-10-16 06:40:00
2010-10-29 15:00:00
2010-11-11 23:20:00
2010-11-25 07:40:00
2010-12-08 16:00:00
2010-12-22 00:20:00
2011-01-04 08:40:00
2011-01-17 17:00:00
2011-01-31 01:20:00
2011-02-13 09:40:00
2011-02-26 18:00:00
2011-03-12 02:20:00

5 迭代器和生成器

​ 将列表生成式中[]改成() 之后数据结构发生改变 ,从列表变为生成器. 在for...in...语句中的都是可迭代的:比如lists,strings,files…因为这些可迭代的对象你可以随意的读取,所以非常方便易用,但是你必须把它们的值放到内存里,当它们有很多值时就会消耗太多的内存.

>>> L = [x*x for x in range(10)]   #迭代器
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]#列表
>>> g = (x*x for x in range(10))   #生成器
>>> g
 at 0x0000028F8B774200>#生成器对象

​ 通过列表生成式,可以直接创建一个列表。但是受到内存限制,列表容量肯定是有限的。而且,创建一个包含百万元素的列表,不仅是占用很大的内存空间,如:我们只需要访问前面的几个元素,后面大部分元素所占的空间都是浪费的。因此,没有必要创建完整的列表(节省大量内存空间)。在Python中,我们可以采用生成器:边循环,边计算的机制—>generator

生成器的关键字yield: 理解Yield你必须先理解当你调用函数的时候,函数里的代码并没有运行.函数仅仅返回生成器对象

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() # 创建生成器
>>> print(mygenerator) # mygenerator is an object!
0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

当你的函数要返回一个非常大的集合并且你希望只读一次的话,那么它就非常的方便了.

你可能感兴趣的:(Python随笔,迭代器生成器,私有变量,列表集合字典推导式)