【TSP】基于matlab 改进的蚁群算法之求解旅行商问题【含Matlab源码 242期】

一、简介

旅行商问题(TSP问题)。假设有一个旅行商人要拜访全国31个省会城市,他需要选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择要求是所选路径的路程为所有路径之中的最小值。
在这里插入图片描述
1 蚁群算法的提出
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。遗传算法在模式识别、神经网络、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。
2 算法的基本原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、源代码

%%%%%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;                %清除所有变量
close all;                %清图
clc;                      %清屏
m=50;                     %蚂蚁个数
Alpha=1;                  %信息素重要程度参数              
Beta=5;                   %启发式因子重要程度参数
Rho=0.1;                  %信息素蒸发系数
G_max=200;                %最大迭代次数
Q=100;                    %信息素增加强度系数
C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;...
    3238 1229;4196 1044;4312  790;4386  570;3007 1970;2562 1756;...
    2788 1491;2381 1676;1332  695;3715 1678;3918 2179;4061 2370;...
    3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;...
    3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;...
    2370 2975];                 %31个省会城市坐标
%%%%%%%%%%%%%%%%%%%%%%%%第一步:变量初始化%%%%%%%%%%%%%%%%%%%%%%%%
n=size(C,1);              %n表示问题的规模(城市个数)
D=zeros(n,n);             %D表示两个城市距离间隔矩阵
for i=1:n
    for j=1:n
        if i~=j
            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
        else
            D(i,j)=eps;
        end
        D(j,i)=D(i,j);
    end
end
Eta=1./D;                    %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);               %Tau为信息素矩阵
Tabu=zeros(m,n);             %存储并记录路径的生成
NC=1;                        %迭代计数器
R_best=zeros(G_max,n);       %各代最佳路线
L_best=inf.*ones(G_max,1);   %各代最佳路线的长度
figure(1);%优化解
while NC<=G_max            
    %%%%%%%%%%%%%%%%%%第二步:将m只蚂蚁放到n个城市上%%%%%%%%%%%%%%%%
    Randpos=[];
    for i=1:(ceil(m/n))
        Randpos=[Randpos,randperm(n)];
    end
    Tabu(:,1)=(Randpos(1,1:m))'; 
    %%%%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游%%%%%%
    for j=2:n
        for i=1:m
            visited=Tabu(i,1:(j-1));  %已访问的城市
            J=zeros(1,(n-j+1));       %待访问的城市
            P=J;                      %待访问城市的选择概率分布
            Jc=1;
            for k=1:n
                if length(find(visited==k))==0
                    J(Jc)=k;
                    Jc=Jc+1;
                end
            end
            %%%%%%%%%%%%%%%%%%计算待选城市的概率分布%%%%%%%%%%%%%%%%
            for k=1:length(J)
                P(k)=(Tau(visited(end),J(k))^Alpha)...
                    *(Eta(visited(end),J(k))^Beta);
            end
            P=P/(sum(P));
            %%%%%%%%%%%%%%%%按概率原则选取下一个城市%%%%%%%%%%%%%%%%
            Pcum=cumsum(P);
            Select=find(Pcum>=rand);
            to_visit=J(Select(1));
            Tabu(i,j)=to_visit;
        end
    end

三、运行结果

【TSP】基于matlab 改进的蚁群算法之求解旅行商问题【含Matlab源码 242期】_第1张图片
【TSP】基于matlab 改进的蚁群算法之求解旅行商问题【含Matlab源码 242期】_第2张图片

四、备注

完整代码或者代写添加QQ1564658423
往期回顾>>>>>>
【预测模型】基于matlab粒子群的lssvm预测【含Matlab源码 103期】
【lSSVM预测】基于matlab鲸鱼优化算法之lSSVM数据预测【含Matlab源码 104期】
【lstm预测】基于matlab鲸鱼优化算法之改进的lstm预测【含Matlab源码 105期】
【SVM预测】基于matlab蝙蝠算法改进的SVM预测(一)【含Matlab源码 106期】
【SVM预测】基于matlab灰狼算法优化svm支持向量机预测【含Matlab源码 107期】
【预测模型】基于matlab BP神经网络的预测【含Matlab源码 108期】
【lssvm预测模型】基于蝙蝠算法改进的最小二乘支持向量机lssvm预测【Matlab 109期】
【lssvm预测】基于飞蛾扑火算法改进的最小二乘支持向量机lssvm预测【Matlab 110期】
【SVM预测】基于matlab蝙蝠算法之改进的SVM预测(二)【含Matlab源码 141期】
【lssvm预测】基于matlab飞蛾扑火算法之改进的最小二乘支持向量机lssvm预测【含Matlab源码 142期】
【ANN预测模型】基于matlab差分算法改进ANN网络预测【含Matlab源码 151期】
【预测模型】基于matlab RBF神经网络预测模型【含Matlab源码 177期】
【预测模型】基于matlab SVM回归预测算法来预测股票趋势【含Matlab源码 180期】
【预测模型】基于matlab BP神经网络之模型优化预测【含Matlab源码 221期】
【预测模型】基于matlab RLS算法的数据预测【含Matlab源码 222期】
【预测模型】基于matlab碳排放约束下的煤炭消费量优化预测【含Matlab源码 223期】
【路径规划】基于matlab A星和改进A星的路径规划【含Matlab源码 225期】
【TSP】基于matlab 改进的禁忌搜索算法之求解旅行商问题【含Matlab源码 241期】

你可能感兴趣的:(matlab,路径规划)