- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- python 安装 win32com
郎君啊
python开发语言
扩展,Python,安装相关视频讲解:StableDiffusion提升出图速度,TensorRT扩展,SDXL-SSD-1B-A1111,速度提升60%,PyTorch更新python的or运算赋值用法用python编程Excel有没有用处?如何在Windows系统上安装win32com一、整体流程步骤操作1下载并安装Python2安装pywin32扩展包3验证安装是否成功二、具体操作步骤及代码
- 深度学习部署:Triton(Triton inference server)【旧称:TensorRT serving,专门针对TensorRT设计的服务器框架,后来变为Triton,支持其他推理后端】
u013250861
#LLM/部署深度学习人工智能
triton作为一个NVIDIA开源的商用级别的服务框架,个人认为很好用而且很稳定,API接口的变化也不大,我从2020年的20.06切换到2022年的22.06,两个大版本切换,一些涉及到代码的工程变动很少,稍微修改修改就可以直接复用,很方便。本系列讲解的版本也是基于22.06。本系列讲解重点是结合实际的应用场景以及源码分析,以及写一些triton周边的插件、集成等。非速成,适合同样喜欢深入的小
- python opencv cuda tensorrt pytorch之间的版本对应
YIACA
pythonopencvpytorch
python3.7opencv4.4cuda10.2tensorrt7xpytorch1.5DeepStream5.xOpenCV2.x:支持Python2.xOpenCV3.x:支持Python2.7、Python3.xOpenCV4.x:支持Python2.7、Python3.x、Python3.8+CUDA11.x:支持Python3.6、3.7、3.8、3.9CUDA10.2:支持Pyth
- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- 算法学习-2024.8.16
蓝纹绿茶
学习
一、Tensorrt学习补充TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用32位或16位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三
- onnx转tensorRT模型出现错误 This version of TensorRT only supports input K as an initializer
lainegates
pytorch人工智能深度学习神经网络
问题onnx模型转tensorRT模型时,出现错误。ThisversionofTensorRTonlysupportsinputKasaninitializer.TryapplyingconstantfoldingonthemodelusingPolygraphgoogle到tensorRT8.6支持了dynamictopk,不会再有这个问题。但项目上限制是tensorRT8.5Problemsc
- trt | torch2trt的使用方式
Mopes__
分享TensorRTtorch2trt
一、安装1.安装tensorrtpython接口下载trt包.tar.gzhttps://developer.nvidia.com/nvidia-tensorrt-5x-download解压tarxvfTensorRT-6.0.1.5.Ubuntu-18.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz安装trtpython接口cdpythonpipinstallte
- 用TensorRT-LLM跑通chatGLM3_6B模型
心瘾こころ
语言模型python
零、参考资料NVIDIA官网THUDM的GithubNVIDIA的Github一、构建TensorRT-LLM的docker镜像gitlfsinstallgitclonehttps://github.com/NVIDIA/TensorRT-LLM.gitcdTensorRT-LLMgitsubmoduleupdate--init--recursivesudomake-Cdockerrelease_
- Ubuntu20.04部署Ollama
stxinu
Nvidia人工智能linux服务器人工智能
在Ubuntu20.04上面安装完RTX4060的NvidiaCuda和TensorRT环境后,就开始跑些大模型看看。下面是安装使用Ollama的过程:安装Ollama:curl-khttps://ollama.com/install.sh|sh执行上面命令,有如下打印:%Total%Received%XferdAverageSpeedTimeTimeTimeCurrentDloadUploadT
- AI秒出图!StableDiffusion Automatic1111正式支持Tensorrt
germandai
人工智能stablediffusion
秒级出图的AI绘画终于支持Automatic1111。今天在AI绘画的开源平台Automatic1111上发布了Tensorrt项目,项目地址是https://github.com/AUTOMATIC1111/stable-diffusion-webui-tensorrt该项目是基于automatic1111的stable-diffusion-webui项目的子项目。基本原理:我们知道,autom
- PyTorch训练,TensorRT部署的简要步骤(采用ONNX中转的方式)
赛先生.AI
TensorRTpytorch人工智能TensorRTONNX
1.简述使用PyTorch执行训练,使用TensorRT进行部署有很多种方法,比较常用的是基于INetworkDefinition进行每一层的自定义,这样一来,会反向促使研究者能够对真个网络的细节有更深的理解。另一种相对简便的方式就是通过ONNX中间转换的形式。本文主要针对该途径进行简单的脉络阐述。2.导出ONNX如果使用的是PyTorch训练框架,可采用其自带的ONNX导出API。torch.o
- ChatGPT引领的AI面试攻略系列:cuda和tensorRT
梦想的理由
深度学习c++chatgpt人工智能面试
系列文章目录cuda和tensorRT(本文)AI全栈工程师文章目录系列文章目录一、前言二、面试题1.CUDA编程基础2.CUDA编程进阶3.性能优化4.TensorRT基础5.TensorRT进阶6.实际应用与案例分析7.编程与代码实践8.高级话题与趋势一、前言随着人工智能技术的飞速发展,该领域的就业机会也随之增多。无论是刚刚踏入这一领域的新手,还是经验丰富的专业人士,都可能面临着各种面试挑战。
- 使用TensorRT在PyTorch项目中加速深度学习推理
从零开始学习人工智能
深度学习pytorch人工智能
在PyTorch项目中使用TensorRT进行深度学习推理通常涉及以下步骤:模型训练:首先,在PyTorch中训练你的深度学习模型。模型导出:训练完成后,将模型从PyTorch导出为ONNX(OpenNeuralNetworkExchange)格式。ONNX是一种用于表示深度学习模型的开放格式,它使得模型可以在不同的深度学习框架之间互操作。模型优化:使用TensorRT优化ONNX模型。Tenso
- [C++]使用C++部署yolov9的tensorrt模型进行目标检测
FL1623863129
C/C++目标检测人工智能计算机视觉
部署YOLOv9的TensorRT模型进行目标检测是一个涉及多个步骤的过程,主要包括准备环境、模型转换、编写代码和模型推理。首先,确保你的开发环境已安装了NVIDIA的TensorRT。TensorRT是一个用于高效推理的SDK,它能对TensorFlow、PyTorch等框架训练的模型进行优化,从而加速模型在NVIDIAGPU上的运行速度。接下来,你需要将YOLOv9的模型转换为TensorRT
- [技术杂谈]Chat With RTX 介绍
FL1623863129
技术杂谈人工智能
英伟达(Nvidia)已于近日发布了名为“ChatwithRTX”的Demo版个性化AI聊天机器人,并在其海外官网渠道中提供了下载链接。据了解,这是一款适用于Windows平台的聊天机器人,由TensorRT-LLM提供支持,完全在本地运行。据官网信息显示,想要安装该聊天机器人应用,用户的系统配置需使用Nvidia的30系/40系显卡(或Ampere/Ada架构的其他显卡),且显存至少为8GB。此
- WhisperFusion:具有超低延迟无缝对话功能的AI系统
语音之家
智能语音人工智能语音识别语言模型
WhisperFusion基于WhisperLive和WhisperSpeech的功能而构建,在实时语音到文本管道之上集成了大型语言模型Mistral(LLM)。LLM和Whisper都经过优化,可作为TensorRT引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech是通过torch.compile进行优化的。特征实时语音转文本:利用OpenAIWhisperLive将口
- 心法利器[107] onnx和tensorRT的bert加速方案记录
机智的叉烧
bert人工智能深度学习自然语言处理
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会,与大家一起成长。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新一版的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[102]|大模型落地应用架构的一种模式心法利器[103]|大模型badcase修复方案思考心法利器[104]|基础RAG-向量检索
- jetson orin nano 使用yolov8导出engine
coder攻城狮
YOLO
1.导出onnx经过前面训练,得到了best.pt模型,现在想要使用tensorrt进行推理,需要先导出为onnx格式,再转化为engine格式。yoloexportmodel=best.ptformat=onnxopset=12simplify=True2.解决错误在导出过程中,可能会出现错误,cmake版本问题安装好后,默认cmake版本为3.16,需要对cmake进行升级sudopipins
- TensorRT下载安装
Jumy_S
python
TensorRT下载安装一下载地址https://developer.nvidia.com/nvidia-tensorrt-8x-download版本8.2.3GA(成熟稳定版)和8.4.0EA(新功能测试版)以后,有C++和python的API,完全等价可以混用二安装tensorrt的python版本pipinstalltensorrt-8.5.1.7-cp38-none-win_amd64.w
- 安装使用MMDeploy(Python版)
*Major*
人工智能python
安装使用MMDeploy(Python版)一安装MMDeploypythonmmdeploy-main/tools/deploy.pymmdeploy-main/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.pymmdetection/configs/faster_rcnn/faster-rcnn_r50_
- Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度
知来者逆
StableDiffusionstablediffusionTensorRT人工智能AIGC
概述Diffusion模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题,StableDiffusion采用了多种方式来加速图像生成,使得实时图像生成成为可能。最核心的加速是StableDiffusion使用了编码器将图像从原始的3512512大小转换为更小的46464大小,从而极大地降低了计算量。它还利用了潜在表示空间(latentspace)上的Diffusion过程,进一步降低了计
- yolov5 torch转tensorrt详解【推荐】
Teng-Sun
YOLO
转化函数#可以在https://github.com/ultralytics/yolov5/blob/master/export.py里面找到defexport_engine(model,im,file,half,dynamic,simplify,workspace=4,verbose=False,prefix=colorstr('TensorRT:')):#YOLOv5TensorRTexpor
- mmdetection模型转onnx和tensorrt实战
dream_home8407
python深度学习人工智能
一,说明1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;2.模型转换时,运行环境中各种工具的版本要保持一致;3.TensorRT我一直装不上,我用的是镜像环境.参考链接:link二,使用Docker镜像1.0,镜像基础环境构建exportTAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploydockerpu
- Jetson AGX Orin安装Anaconda,Cuda,Cudnn,pytorch,Tensorrt,ROS
枭玉龙
#ubuntu系统下安装pytorch人工智能python
Anaconda:https://repo.anaconda.com/archive/Cuda:https://forums.developer.nvidia.com/t/pytorch-for-jetson/720481:安装Anaconda3下载:Anaconda3-2021.11-Linux-aarch64.shchmod+xAnaconda3-2021.11-Linux-aarch64.s
- Jetson Xavier NX CUDA、cuDNN、TensorRT与Pytorch环境配置
想努力的人
pytorch人工智能python
橘子大虾关注IP属地:江苏0.1312022.05.1911:31:43字数331阅读3,854torch与vision源码安装包下载链接:https://pan.baidu.com/s/1mrIgGoMo0bq6otGhlh-E3A提取码:6sb31.Cuda、CuDNN和TensorRT在JetsonXavierNx控制台中执行指令#更新软件源sudoaptupdate#安装JetPack组件
- orin nx 安装paddlespeech记录
想努力的人
算法语音合成人工智能
nx配置:模块版本说明CPU8核内存16GCuda版本11.4Opencv版本4.5.4Tensorrt版本5.1Cudnn版本8.6.0.166Deepstream版本6.2Python版本3.8算力100T安装paddlepaddle:去飞桨官网下载jetpack版本的:下载安装Linux推理库-PaddlePaddle深度学习平台当需要调用语速的接口时:需要安装soxbindings包,这个
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod