mmdetection模型转onnx和tensorrt实战

一,说明

1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;
2.模型转换时,运行环境中各种工具的版本要保持一致;
3.TensorRT我一直装不上,我用的是镜像环境.

参考链接:link

二,使用Docker镜像

1.0,镜像基础环境构建
export TAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploy
docker pull $TAG

基础环境包含以下,此处Torch版本要和训练环境中保持一致

OS	= Ubuntu20.04
CUDA	= 11.8
CUDNN	= 8.9
Python	= 3.8.10
Torch=	2.0.0
TorchVision=	0.15.0
TorchScript=	2.0.0
TensorRT=	8.6.1.6
ONNXRuntime=	1.15.1
OpenVINO=	2022.3.0
ncnn=	20230816
openppl=	0.8.1

link

运行Docker 环境

export TAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploy
docker run --gpus=all -it --rm $TAG

常见问题

docker: Error response from daemon: could not select device driver "" with capabilities: [gpu].
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

三.模型转换

1.0,镜像环境安装mmdetection,要和训练环境保持一致
# 安装 mmdetection。转换时,需要使用 mmdetection 仓库中的模型配置文件,构建 PyTorch nn module
git clone -b 3.x https://github.com/open-mmlab/mmdetection.git
cd mmdetection
mim install -v -e .
cd ..

mim install mmdet

# 下载 Faster R-CNN 模型权重
wget -P checkpoints https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth

# 执行转换命令,实现端到端的转换
python3 mmdeploy/tools/deploy.py \
    mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
    mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    mmdetection/demo/demo.jpg \
    --work-dir mmdeploy_model/faster-rcnn \
    --device cuda \
    --dump-info

转换我自己的模型示例

python3 mmdeploy/tools/deploy.py \
mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
checkpoints/shebei/cascade-rcnn_r101_fpn_1x_coco.py \
checkpoints/shebei/epoch_16.pth checkpoints/shebei/test_img/2020_180305.jpg \
--work-dir mmdeploy_model/cascade-rcnn0205 \
 --device cuda \
 --dump-info

得到的结果

root@f88294e16365:~/workspace/mmdeploy_model/cascade-rcnn0205# ll -h
total 747M
drwxr-xr-x 2 root root 4.0K Feb  5 02:01 ./
drwxr-xr-x 9 root root 4.0K Feb  5 01:59 ../
-rw-r--r-- 1 root root  342 Feb  5 01:59 deploy.json
-rw-r--r-- 1 root root 2.4K Feb  5 01:59 detail.json
-rw-r--r-- 1 root root 403M Feb  5 02:01 end2end.engine
-rw-r--r-- 1 root root 337M Feb  5 01:59 end2end.onnx
-rw-r--r-- 1 root root 3.9M Feb  5 02:01 output_pytorch.jpg
-rw-r--r-- 1 root root 3.9M Feb  5 02:01 output_tensorrt.jpg
-rw-r--r-- 1 root root 3.9K Feb  5 01:59 pipeline.json

注意事项,mmdet>2.0版本转换过程中,如果class_name数量大于20时候,会出现报错
File "/home/ai-developer/data/mmdetection-main/mmdet/visualization/palette.py", line 65, in get_palette
assert len(dataset_palette) >= num_classes,
AssertionError: The length of palette should not be less than num_classes.

我已经提了issues,找到解决方案后会更新

四.Python API

link

from mmdeploy_runtime import Detector
import cv2

# 读取图片
img = cv2.imread('mmdetection/demo/demo.jpg')

# 创建检测器
detector = Detector(model_path='mmdeploy_models/faster-rcnn', device_name='cuda', device_id=0)
# 执行推理
bboxes, labels, _ = detector(img)
# 使用阈值过滤推理结果,并绘制到原图中
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
  [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
  if score < 0.3:
      continue
  cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))

cv2.imwrite('output_detection.png', img)

五,目前使用的python api 并没有使得推理速度提高至100ms以下

问题在于使用opencv读取图像平均占用200ms,模型推理时间在50ms左右,


from mmdeploy_runtime import Detector
import cv2
import time

detector = Detector(model_path='mmdeploy_model/cascade-rcnn0205', device_name='cuda', device_id=0)
starttime=time.time()
for i in range(1000):
    img = cv2.imread('checkpoints/shebei/test_img/2020_180305.jpg')
    bboxes, labels, _ = detector(img)
    indices = [i for i in range(len(bboxes))]
   # for index, bbox, label_id in zip(indices, bboxes, labels):
      #[left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
     # if score < 0.3:
      #    continue
     # cv2.rectangle(img, (left, top), (right, bottom),(0, 0, 255))

    #cv2.imwrite('output_detection.png', img)
endtime=time.time()-starttime
print(endtime)
print(endtime/1000)
[2024-02-05 02:26:04.252] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
258.1476366519928
0.2581476366519928
root@f88294e16365:~/workspace# python3 inference_model_python_api.py 
[2024-02-05 02:34:40.087] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "mmdeploy_model/cascade-rcnn0205"
[2024-02-05 02:34:40.986] [mmdeploy] [warning] [trt_net.cpp:24] TRTNet: CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
202.68383264541626
0.20268383264541626

你可能感兴趣的:(python,深度学习,人工智能)