python股票量化交易(10)---使用机器学习算法预测股票涨跌

目录

  • 前言
  • 随机森林算法
  • 搭建股票预测模型
  • 预测下一天的股票涨跌
  • 参数调优
  • 绘制预测与实际涨跌对比图

前言

前面9篇博文对量化交易的各种图形绘制以及计算公式已经讲解的比较清楚了。这里,我们再来玩一个有意思的量化交易,就是用机器学习中的算法预测股票下一日的涨跌,相信本篇是大家最期待的,那么不妨往下看。

随机森林算法

随机森林(Random Forest)是一种经典的Bagging模型,Bagging算法类似与投票,它是一个弱学习器决策树,每个弱学习器(可以看作每个人,在股票预测中,可以看成训练模型的每个分组)都有一票,最终我们会根据“少数服从多数的原则”产生最后的预测结果。

比如原始的数据集:歌尔股份,有一年的涨跌情况,我们使用随机森林算法进行预测,它会首先将这所有的数据分成样本1,2,3,4等等进行训练,然后你导入某一天的股票数据详情,那么每个样本会根据你导入的数据进行预测涨跌,最终哪个预测结果多,就是哪个。

搭建股票预测模型

这里,我们需要获取股票的历史涨跌情况进行训练。所以,我们首先要做的就是获取股票的数据,这里我们获取牧原股份2019

你可能感兴趣的:(股票量化交易,Python,python,机器学习,随机森林,股票,量化交易)