- 领域模型、MDD\DDD\TDD概念
lemon_lmlmlmlm
java
此篇是个人笔记整理,知识来源:领域模型-CSDN博客、什么是MDD,DDD,TDD?-CSDN博客一、领域模型定义:领域模型是对领域内的概念类或现实世界中对象的可视化表示。又称概念模型、领域对象模型、分析对象模型。它专注于分析问题领域本身,发掘重要的业务领域概念,并建立业务领域概念之间的关系。领域模型(DomainModel),是完成从需求分析到面向对象设计的一座桥梁,领域模型是指对需求所涉及的领
- 【大模型应用开发 动手做AI Agent】LlamaIndex和基于RAG的AI开发
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录【大模型应用开发动手做AIAgent】LlamaIndex和基于RAG的AI开发1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系LlamaIndexRAG联系3.核心算法原理&具体操作步骤3.1算法原理概述LlamaIndexRAG3.2算法步骤详解LlamaIndexRAG3.3算法优缺点LlamaIndexRAG3.4算法应用领域4.数学模型和公
- springboot整合doris(doris创建表)
小徐敲java
dorisspringboot数据库doris
Doris的数据模型主要分为3类:明细模型(DuplicateKeyModel):允许指定的Key列重复;适用于必须保留所有原始数据记录的情况主键模型(UniqueKeyModel):每一行的Key值唯一;可确保给定的Key列不会存在重复行聚合模型(AggregateKeyModel):可根据Key列聚合数据;通常用于需要汇总或聚合信息(如总数或平均值)的情况Column可以分为两大类:Key和V
- 5 个遥遥领先的大模型 RAG 工具
机器学习社区
大模型大模型算法人工智能RAG多模态大模型语言模型
想象一下拥有一种超能力,让你能够对任何问题或提示生成类似人类的回答,同时还能够利用庞大的外部知识库确保准确性和相关性。这不是科幻小说,这就是检索增强生成(RAG)的力量。在本文中,我们将介绍五大遥遥领先的RAG工具或库:LangChain、LlamaIndex、Haystack、RAGatouille和EmbedChain。LangChainLangChain是一个全面的开源框架,用于开发大型语言
- AI会不会是一个大泡沫
人机与认知实验室
人工智能
深度求索(DeepSeek)引发的震撼,还在继续进行中。刚看了一下数字:美股盘前,英伟达跌超11%,博通跌超11%,台积电、Arm跌超10%,同时,在日本股市,英伟达的主要供应商AdvantestCorp的股价暴跌8.6%。这些科技股,真是跌惨了。这整件事,就像魔幻一下。1月20日,深度求索正式发布推理大模型DeepSeek-R1。推出后不久,R1就凭借其开源的性质、大幅下降的售价和训练成本获得了
- RAG技术架构深度解析(非常详细)零基础入门到精通,收藏这一篇就够了
Python_chichi
程序员互联网大模型架构人工智能机器学习语音识别
本文主要介绍了RAG技术架构在AI编程中的创新应用及其面临的挑战。文章深入分析了RAG技术架构的兼容性、实时性和智能化水平等方面的问题,并提出了相应的改进措施,如加强标准化建设、引入实时数据处理技术和先进算法模型。同时,文章预测了RAG技术架构在智能化水平持续提升、跨领域融合加速以及数据隐私与安全保障方面的未来发展趋势。最后,文章回顾了RAG技术在AI编程领域的应用成果,并展望了其广阔的应用前景,
- doris: MAP数据类型
向阳1218
大数据doris
MAP表示由K,V类型元素组成的map,不能作为key列使用。目前支持在Duplicate,Unique模型的表中使用。K,V支持的类型有:BOOLEAN,TINYINT,SMALLINT,INT,BIGINT,LARGEINT,FLOAT,DOUBLE,DECIMAL,DECIMALV3,DATE,DATEV2,DATETIME,DATETIMEV2,CHAR,VARCHAR,STRINGCSV
- 构建 Q&A 系统:基于文档和模型的问答
drebander
AI编程springAI
在现代企业中,自动化的问答系统可以极大地提升工作效率,特别是在文档处理、客户支持和知识管理等领域。通过结合SpringAI和文档检索技术,可以轻松构建一个智能的问答系统,帮助用户从文档中快速获取信息。本文将展示如何利用SpringAI构建一个可以根据文档内容回答问题的智能Q&A系统。1.构建智能Q&A系统的背景现代的Q&A系统不仅需要能理解用户的问题,还需要能够从大量文档中找到相关的答案。传统的问
- (新春特辑)腾讯开源MimicMotion整合包,最强图片生成跳舞视频的动作视频模型,动作丝滑没有破绽
struggle2025
人工智能计算机视觉机器学习AI作画腾讯云AI代码助手
一、项目介绍:(文末提供下载)腾讯图片生成跳舞视频的项目MimicMotion,高质量人类动作视频生成与置信感姿势。亮点:丰富的细节,良好的时间平滑性,以及长视频长度。效果同时支持面部特征和唇形同步,不止可以搞跳舞视频,也可以做数字人。本文信息图片均来源于GitHub开源地址:https://github.com/Tencent/MimicMotion二、效果展示三、概述近年来,生成式人工智能在图
- Transformers库的模板困境:apply_chat_template的版本变迁与解决方案
Gaffey大杂烩
大模型windowslinux数据库
目录问题现状低版本(4.43及以下)的简便方式高版本的报错问题原因分析旧版本的实现逻辑新版本的变化解决办法问题现状在使用Transformers库中的tokenizer处理模型输入时,我们经常需要将输入文本格式化为模型可以理解的格式。这个过程在不同版本的Transformers库中有着显著的差异。低版本(4.43及以下)的简便方式在Transformers4.43及更低版本中,当我们需要加载类似C
- Ollama 可以设置的环境变量
刘贤松
工具服务器运维
在Ollama的世界里,环境变量如同神秘的符文,它们是控制和定制这个强大工具的关键。通过精心设置这些环境变量,我们可以让Ollama更好地适应我们的需求,就像调整一把精密的乐器,使其奏出最和谐的旋律。以下是一些可以设置的环境变量,它们将帮助我们驾驭Ollama,让它成为我们探索数据海洋的得力助手。Llama3.1是Meta(Facebook的母公司)发布的一系列最先进的开源大语言模型。Llama3
- 轻松实现 vLLM Chat:用 LangChain 替代 OpenAI API
ahdfwcevnhrtds
langchainpython
引言在现代应用中,使用语言模型进行自动化对话生成已经成为一个重要趋势。vLLM作为开源的语言模型实现,可以部署成一个模拟OpenAIAPI协议的服务器,方便成为应用中的替代方案。本篇文章将介绍如何使用LangChain的langchain-openai包来轻松实现vLLMChat。主要内容vLLM概述vLLM可以作为一个服务部署,模拟OpenAIAPI协议,从而成为OpenAIAPI的替代方案。通
- 使用 Python 和 scikit-learn 实现 KNN 分类:以鸢尾花数据集为例
弥树子
pythonscikit-learn分类
在机器学习的世界里,K-NearestNeighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过Python的scikit-learn库实现KNN分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。1.KNN算法简介KNN是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训
- flask+layui学生信息管理系统
元宇宙中的程序员
flasklayuipython
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、数据库建模1、创建数据模型classStudentORM(db.Model):stu_id=d
- LLM架构与优化:从理论到实践的关键技术
XianxinMao
人工智能
标题:“LLM架构与优化:从理论到实践的关键技术”文章信息摘要:文章探讨了大型语言模型(LLM)开发与应用中的关键技术,包括Transformer架构、注意力机制、采样技术、Tokenization等基础理论,以及模型部署、应用开发、优化等实践技能。重点分析了预训练、后训练、监督微调(SFT)和偏好对齐(PreferenceAlignment)在提升模型性能中的作用,并对比了直接偏好优化(DPO)
- 数字化智能运维平台建设方案
公众号:优享智库
数字化转型数据治理主数据数据仓库运维
数字化智能运维平台建设方案数字化智能运维平台建设方案项目背景与目标运维现状与挑战数字化转型需求项目目标与预期成果平台架构设计整体架构规划功能模块划分技术选型及原因数据采集与监控数据来源及接入方式实时监控与预警机制数据存储与管理策略智能化分析与优化故障诊断与预测模型性能评估及优化建议资源调度与容量规划平台安全保障措施身份认证与权限管理数据加密传输存储漏洞扫描及修复机制平台实施与运维支持实施步骤及时间
- 大语言模型LLM在地理信息GIS中应用场景
GISer_Jinger
人工智能GIS模型与应用语言模型人工智能自然语言处理arcgis
AI&地理AI大语言模型在地理中的应用主要体现在以下几个方面:一、地理信息检索与查询AI大语言模型能够理解复杂的自然语言查询,包括地名、地理位置、地理特征等,从而提供更加精准的地理信息检索服务。例如,用户可以通过自然语言输入查询某个地点的详细信息,模型能够返回包括地理位置、周边设施、交通状况等在内的全面信息。AI与地理信息检索与查询的结合为地理信息的获取和利用带来了革命性的变化。以下是对AI在地理
- ABAP git客户端
在多模态模型的架构上,ChatGPT的绘图能力主要依赖以下几个核心组件:跨模态编码器(Cross-ModalEncoder):跨模态编码器的作用是将文本和图像的特征进行对齐。GPT可以将用户输入的文本描述转换为文本特征表示,然后利用跨模态编码器将这些特征映射到图像特征空间。这种方式确保模型能够理解描述性语言中不同细节是如何与图像特征对应的。
- SQLAlchemy
xnuscd
人工智能
SQLAlchemy系统性开发文档(扩展版)目录简介核心概念EngineSessionModels(ORM映射)SQLAlchemy的工作流程使用SQLAlchemy进行查询基础查询过滤和条件排序和分页连接查询结合FastAPI和SQLAlchemy集成SQLAlchemy与FastAPI依赖注入使用SQLModel实践示例定义模型创建数据库会话执行查询详细分析get_chatmessage函数最
- sqlalchemy mysql创建表_SQLAlchemy通过models创建数据库表
王连涛
sqlalchemymysql创建表
原地址:http://blog.csdn.net/jmilk/article/details/53184903定义数据模型modelsSQLAlchemy允许我们根据数据库的表结构来创建数据模型,反之亦可.所以我们一般无须手动的登录到数据库中使用SQL语句来创建表,我们只需把数据模型定义好了之后,表结构也就有了.首先要初始化SQLAlchemy,在models.py中把app对象传入SQLAlch
- SQLAlchemy 反向生成 model 模型
weixin_30693183
数据库开发工具python
前言Django反向生成的model模型的命令:pythonmanager.pyinspectdbSQLAlchemy/Flask-SQLAlchemy则是:pip3installsqlacodegen使用方法如下利用sqlacodegen自动生成ORM实体类..\Anaconda3\envs\py3\Scripts>.\sqlacodegen.exe--outfileproject_path\m
- 人脸识别的经典深度学习方法
明初啥都能学会
深度学习人工智能
人脸识别的经典深度学习方法引言1.卷积神经网络(CNN)1.1LeNet1.2AlexNet1.3VGGNet1.4ResNet2.人脸检测2.1Viola-Jones算法2.2基于深度学习的人脸检测3.人脸特征提取3.1主成分分析(PCA)3.2人脸对齐3.2.1基于特征点的对齐3.2.2基于深度学习的对齐4.人脸识别模型4.1传统机器学习方法4.2基于深度学习的方法5.公式解读5.1卷积运算5
- sqlalchemy动态生成model模型
killersdz
python数据库
因业务需要从不同时期的sqlite数据库中取数据,不同时期的数据库字段是不同的,但是以往用sqlalchemy管理数据库时的model是写死的,就会导致有些字段错误而报错,这时我们就要根据版本动态生成model众所周知python里的type()函数是可以查看一个实例的class类型,但其实type()也可以用来创建一个class类,我们可以利用这一点动态创建model,下面放出例子#model.
- CT-Mamba:一种用于低剂量CT降噪的混合卷积状态空间模型 论文解读
ZcZc__1
深度学习人工智能图像处理
论文:CT-Mamba:AHybridConvolutionalStateSpaceModelforLow-DoseCTDenoising代码:zy2219105/CT-Mamba,作者称将会在论文正式发表后提供。本文参考了该网站,其对CT-Mamba提供了更详细的描述:https://www.aimodels.fyi/papers/arxiv/ct-mamba-hybrid-convolutio
- MicroAI™将人工智能培训引入RENESAS MCU
sinat_41698914
人工智能mcubigdata
在端点部署的人工智能技术将加快资产密集型行业的上市时间达拉斯--(美国商业资讯)--边缘原生人工智能(AI)和机器学习(ML)产品领域的先驱MicroAITM今天宣布,公司已将其MicroAIAtomML™技术与RenesasRA微控制器(MCU)产品线进行整合。与全球微控制器领导者Renesas合作将机器学习引入MCU,并借助MicroAI直接在嵌入式环境中训练机器学习模型的能力——这在业界尚属
- 【面试】【程序员基本知识】计算机网络,设计模式,正则,安全
患得患失949
面试考题专栏(前后端)安全面试计算机网络
一、计算机网络(一)基本概念计算机网络是一种将多台计算机通过硬件和软件互联,以实现资源共享和数据传输的技术。组成部分:(1)硬件:路由器、交换机、网卡、光纤等。(2)软件:协议栈、操作系统、网络应用等。(二)网络分层模型OSI七层模型(1)物理层:负责数据的物理传输。(2)数据链路层:提供节点间的数据传输。(3)网络层:负责路由与寻址(如IP协议)。(4)传输层:提供端到端的通信(如TCP/UDP
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- DeepSeek R1:中国AI黑马的崛起与挑战
码事漫谈
AI人工智能
文章目录技术突破:从零开始的推理能力进化DeepSeekR1-Zero:纯RL训练的“自我觉醒”DeepSeekR1:冷启动与多阶段训练的平衡之道实验验证:推理能力的全方位跃升基准测试:超越顶尖闭源模型蒸馏技术:小模型的逆袭行业启示:AGI之路的新范式纯RL训练的价值与挑战蒸馏技术的普惠意义开源生态的推动力未来展望:从推理到通用智能结语在人工智能领域,大型语言模型(LLMs)正以迅猛之势重塑我们的
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- NASA锂电池容量增量数据处理
Art1st `Sakura
matlab
Matlab电池充放电画图nasaB005即5号电池在1.5A的恒流(CC)模式下充电,直到电池电压达到4.2V,然后继续以恒压(CV)模式充电,直到充电电流下降到20mA。在恒流(CC)2A水平下放电,直到电池电压分别降至2.7V、2.5V、2.2V和2.5V(电池5、6、7和18)。阻抗测量通过电化学阻抗谱(EIS)频率扫描进行,范围从0.1Hz到5kHz。当电池达到寿命结束(EOL)标准时,
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found