- 【AI大模型应用开发】RAG-Fusion框架:忘掉 RAG,未来是 RAG-Fusion
同学小张
大模型人工智能笔记chatgptagiembeddingRAGprompt
大家好,我是同学小张,+v:jasper_8017一起交流,持续学习C++进阶、OpenGL、WebGL知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。RAG目前很火,但是也有一些不足的地方。有不足就有改进方法。本文我们来看一个方法:RAG-Fusion,理解其原理,并看一下其实现源码。文章目录0.RAG的不足1.RAG-Fusion原理概述2.步骤拆解与代码示例2.1
- 网络编程--服务器双客户端聊天
疾跑哥布林升级版
java算法开发语言
写一个服务器和客户端运行服务器和2个客户端,实现聊天功能客户端1和客户端2进行聊天,客户端1将聊天数据发送给服务器,服务器将聊天数据转发给客户端2要求:服务器使用select模型实现,客户端1使用poll模型实现,客户端2使用多线程实现服务器:#include//将client存入数组arr中的最后一个位置上,存完之后,arr数组的长度记得自增voidinsert_client(intarr[],
- rag-给一篇几百页的pdf,如何从中找到关键信息并汇总出关系图
蒸土豆的技术细节
人工智能
小思考对pdf肯定要做模糊chunk,能用模型切分就用模型切分,不能用模型就用规则,规则要尽可能保存连续文本,特殊数据格式(图、表格)必须完整保存,必须能被捕捉到。这些独立的表格or图数据,也要单独做embedding,以其中的title和行列title信息作embedding材料。也不能忘了传统搜索方法,基于搜索的、基于传统词频的、基于关键字的。。。假设已经找到了信息所在的目标,如果它是个表格,
- AI赋能视频创作:蓝耘MaaS与海螺AI技术的深度融合
云边有个稻草人
热门文章人工智能音视频图片生成视频蓝耘智算蓝耘MaaS平台体验海螺AI高效视频渲染和优化
云边有个稻草人-CSDN博客目录一、蓝耘MaaS平台概述(1)平台的模块化设计(2)蓝耘MaaS的灵活性与扩展性(3)蓝耘MaaS的安全性与隐私保护二、海螺AI视频模型简介(1)海螺AI的核心技术(2)海螺AI的视频生成流程(3)海螺AI的应用场景三、在蓝耘Maas平台如何使用海螺AI生成视频(1)注册蓝耘平台账号(2)点击MaaS平台(3)点击视觉模型并选择l2V-01视频模型(4)体验图片生成
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 风控算法(一)——数据测试
月亮月亮要去太阳
机器学习人工智能
下面的内容都是针对数据源测试的一些可能得问题:1、请描述你在开发和执行数据测试流程时的具体步骤。确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。2、如何确定数据产品在风险模型中的潜在价值和适用性的?AUC、IV、相关性、性价比、数据产品背景和领域3、请详细描述你负责的10
- 智见未来:多大模型协同的数据分析新范式
一ge科研小菜菜
人工智能大数据人工智能大数据
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言随着大语言模型(LLM)的快速发展,ChatGPT、DeepSeek、Grok等AI模型在数据分析和洞察生成方面展现出巨大潜力。利用多个LLM的协同能力,可以增强数据分析的多角度解读、减少单一模型的偏差,并优化洞察生成的深度和精准度。本文探讨如何结合多个LLM,在数据分析领域实现更可靠的洞察生成,并提供具体的策略、方法和应用场景。2.主要
- 如何评估大语言模型生成文本的质量?
gs80140
AI语言模型人工智能自然语言处理
目录如何评估大语言模型生成文本的质量?1.评估指标概览自动评估指标(AutomaticMetrics)人工评估方法(HumanEvaluation)2.自动评估方法示例(1)计算BLEU分数(2)计算ROUGE分数(3)计算BERTScore(4)使用GPT-4进行评分3.人工评估方法(1)流畅性(Fluency)检查(2)连贯性(Coherence)检查(3)事实准确性(FactualAccur
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- Adam-mini:深度学习内存效率新突破
XianxinMao
人工智能深度学习人工智能
标题:Adam-mini:深度学习内存效率新突破文章信息摘要:Adam-mini优化器在深度学习领域展现出突破性潜力,尤其在内存效率和计算性能上表现卓越。相比AdamW,Adam-mini将内存效率提升了一倍,并通过减少学习率数量显著降低了内存消耗,同时保持了与AdamW相当甚至更好的性能。在训练十亿参数级别的大语言模型(LLM)时,Adam-mini实现了49.6%的吞吐量提升,并减少了33%的
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- 使用提示词进行信息抽取的实用方法
scaFHIO
windowspython
在大规模语言模型(LLM)中进行信息抽取时,我们不一定需要工具调用功能。通过精心设计的提示词(prompt)可以指导模型输出特定格式的信息,然后对其进行解析以生成结构化数据。这种方法依赖于创建良好的提示词,并将LLM的输出解析为所需的Python对象。技术背景介绍大规模语言模型可以根据提示词生成特定格式的文本。例如,我们可以要求模型以JSON格式输出所需的信息。在信息抽取的场景中,设计良好的提示词
- 服务器相关的硬件知识
猿小喵
运维服务器数据库
网卡:网卡是计算机网络中用于实现计算机之间通信的硬件设备。它工作在OSI模型的第二层(链路层),通过电缆或无线信号与网络设备(如交换机、路由器)连接,带有芯片,可插拔。网卡的接口分为电口(如RJ45接口,用于连接网线)和光口(用于连接光模块和光纤)。根据传输协议,网卡可分为以太网卡、FC(FibreChannel)网卡和iSCSI网卡。以太网卡是最常见的类型,用于普通网络通信;FC网卡主要用于存储
- 笔记:代码随想录算法训练营day57:99.岛屿数量 深搜、岛屿数量 广搜、100.岛屿的最大面积
jingjingjing1111
深度优先算法笔记
学习资料:代码随想录注:文中含大模型生成内容99.岛屿数量卡码网题目链接(ACM模式)先看深搜方法:找到未标标记过的说明找到一片陆地的或者一片陆地的一个角落,dfs搜索是寻找相连接的陆地其余部分并做好标记#include#includeusingnamespacestd;intdirection[4][2]={0,1,-1,0,0,-1,1,0};voiddfs(constvector>&B612
- 正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发
inscode_039
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE正则表达式:编程中的瑞士军刀,如何借助智能工具实现高效开发正则表达式(RegularExpression,简称regex或regexp)是一种用于匹配字符串的模式描述语言。它广泛应用于文本处理、数据验证、搜索和替换等场景中。然而,正则表达式的复杂性和晦涩性常常让编程初学者望而却步。幸运的是,随着AI技术的进步,像InsCo
- 浏览器 DOM 深度解析:从节点类型到遍历操作的全攻略
码农的时光故事
javascript开发语言ecmascript
一、DOM核心概念与节点类型DOM(文档对象模型)是浏览器提供的核心API之一,用于将HTML文档转换为可操作的对象树结构。其核心设计遵循树形结构,每个节点都继承自Node接口,主要分为以下类型:1.基础节点类型Element:对应HTML标签,包含属性和子节点()Text:文本内容节点Comment:注释节点Document:文档根节点,通过document全局对象访问()2.特殊节点类型Doc
- 浏览器工作原理深度解析(阶段一):从 URL 到页面渲染的完整流程
码农的时光故事
javascript前端
一、浏览器工作流程概述作为前端开发者,我们每天都在与浏览器打交道,但多数人对其内部工作机制却知之甚少。实际上,浏览器的核心功能就是将用户输入的URL转换为可视化的网页。这一过程大致分为六个关键步骤:网络请求:通过HTTP/HTTPS协议获取页面资源构建DOM树:解析HTML代码生成文档对象模型样式计算:解析CSS规则并应用到对应元素布局渲染:计算元素位置和尺寸生成渲染树合成优化:将渲染层合并为位图
- Mac上传本地项目文件夹到远程Github个人仓库的方法及常见报错处理
Uzw
GitMacgitgithubmac
最近写NER模型的同时学习参悟了一个开源的项目,做了一些Comments改了点分词规则,打算上传到个人Github仓库,上一次本地上传还是用Windows系统,换了Mac发现有一些规则不能用了,好久不用Git都忘光了…上传过程中报错无数,在此一并总结啦!文章目录Prerequisite上传本地文件夹到Github步骤报错问题描述及解决方法1.You‘veaddedanothergitreposit
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 群体智能优化算法-粒子群优化算法(Particle Swarm Optimization, PSO,含Matlab源代码)
HR Zhou
算法matlab智能优化算法优化
摘要(Abstract)粒子群优化(PSO)是一种基于群体智能的优化算法,受鸟群觅食行为的启发。PSO通过模拟粒子(个体)在搜索空间中的运动来寻找最优解。每个粒子根据自身的历史最优位置(pBest)和全局最优位置(gBest)动态调整速度和位置,从而在全局搜索和局部搜索之间取得平衡。PSO具有收敛速度快、实现简单、计算复杂度低等优点,广泛应用于函数优化、神经网络训练、工程优化等领域。算法介绍1.主
- matlab中s-function模块局部变量的应用
0如约而至0
matlab
最近在项目中,涉及到了matlab中s-function函数的应用。需要在输出信号上加一个受地面站控制的3211激励信号。实现的过程中,遇到了s-function函数内部局部变量每次进入都会初始化置0的问题,网上查阅资料并结合模型实例,最后通过isempty函数来实现。具体的matlab实现代码如下://functiony=fcn(act_sign,act)persistentt2ifisempt
- 【MATLAB】simulink中的S-function
龙泽金
matlab开发语言
1.简介S-function(系统函数)在MATLAB的Simulink中具有重要作用。它是一种可以用多种编程语言(如C、C++、Fortran等)编写的函数,用于自定义模块的行为。通过编写S-function,可以实现特定的算法、逻辑或复杂的动态特性,来扩展Simulink的功能。S-function可以处理输入信号,进行计算,并产生输出信号。它能够实现对模型中特定部分的精细控制和定制化,以满足
- 深入解析 DeepSeek-R1 模型的显存与内存需求
gs80140
基础知识科谱deepseek
DeepSeek-R1系列模型涵盖从轻量级到超大规模的多个版本,适用于不同的应用场景。了解各版本在不同量化精度下的显存和内存需求,有助于选择适合自身硬件配置的模型。模型参数与量化精度的关系模型的参数量决定了其基础大小,而量化精度(如FP16、INT8、INT4)则影响每个参数所占用的存储空间。通过降低量化精度,可以显著减少模型的显存和内存占用,但可能会对模型性能产生一定影响。以下是不同量化精度下,
- S-function模块案例详解(MATLAB程序)
常岱昶Salena
S-function模块案例详解(MATLAB程序)【下载地址】S-function模块案例详解MATLAB程序S-function模块案例详解(MATLAB程序)本仓库提供了一个详细的S-function模块案例,主要内容为编写的蹦极系统的S-function案例详解项目地址:https://gitcode.com/open-source-toolkit/a6c52本仓库提供了一个详细的S-fu
- 使用 OpenAI Chat 模型进行对话开发的入门指南
eahba
python
技术背景介绍OpenAI的对话模型(ChatOpenAI)为开发者提供了强大的自然语言处理功能,可以实现高度交互的AI应用。这篇文章将帮助您快速入门,了解如何在您的应用中集成和使用这些模型,并探讨不同的功能特性。核心原理解析ChatOpenAI模型是基于OpenAI的GPT家族,能够理解上下文并产生对话式回应。最新版的模型不仅支持标准文本输入输出,还支持工具调用、结构化输出等高级特性,满足多种复杂
- MATLAB中的APPdesigner绘制多图问题解析?与逻辑值转成十进制
Ndmzi
Matlabmatlab开发语言
在matlabAPPdesigner中绘图可以用UIAxes组件进行绘图,但是当想多张图时,只能提前绘制图像区域不方便。下面是几种办法:为了操作可以添加Panl组件,方便操作。1、当是要求的几个图像大小都是相同时刻采用函数:tiledlayout创建分块图布局tiledlayout(m,n)tiledlayout('flow')tiledlayout(___,Name,Value)tiledlay
- Matlab修改缓存目录位置(Temp)
Ndmzi
matlab开发语言
这是MATLAB从系统环境变量中找到的设置。也可以使用MATLAB中的SETENV和GETENV函数设置或查询环境变量。请参阅下面的系统级别设置。对于Linux/MAC:MATLAB将从系统中检查环境变量'TMPDIR'(getenv('TMP')),如果它为空,MATLAB将检查环境变量'TMP'如果它为空,MATLAB将使用'/tmp/'作为临时目录。您可以将'TMP'环境变量设置为其他目录,
- Matlab S-Function模块简谈
Captain cool290
matlab
1.单个输出形式的m脚本文件如何编写functiony=fcn()y=u;最简单的例子:就是输出等于输入点一下标题栏:gotodiagram就可以回到模型界面;EditData可以修改数据类型2.多个输出形式的m脚本如何编写function[y1,y2]=fcn(u1,u2)y1=u1+u2;y2=u2-u1;这样就可以多个输入和输出了。mamatlab3.注意点:S-Function中的变量u是
- 【无标题】
gs80140
AI人工智能
KVCache在自回归生成中的作用及显存优化1.什么是KVCache?在大语言模型(LLM)进行自回归(autoregressive)文本生成时,每次生成新token,都需要基于过去的上下文重新计算self-attention机制中的Key(K)和值(V)。KVCache(键值缓存)是一种优化策略,它缓存先前计算的K/V张量,避免重复计算,从而提高生成速度并降低计算成本。2.KVCache在自回归
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found