matlab BP神经网络 newff函数官方源码

最近在学习BP神经网络,想要自定义神经网络内部,但是网上找了很久都没有找到源代码,于是自己去搬运了一波matlab官方的源代码。

不多说,直接上代码,未编辑过的源码:

function out1 = newff(varargin)
%NEWFF Create a feed-forward backpropagation network.
%
%  Obsoleted in R2010b NNET 7.0.  Last used in R2010a NNET 6.0.4.
%  The recommended function is feedforwardnet.
%
%  Syntax
%
%    net = newff(P,T,S)
%    net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF)
%
%  Description
%
%    NEWFF(P,T,S) takes,
%      P  - RxQ1 matrix of Q1 representative R-element input vectors.
%      T  - SNxQ2 matrix of Q2 representative SN-element target vectors.
%      Si  - Sizes of N-1 hidden layers, S1 to S(N-1), default = [].
%            (Output layer size SN is determined from T.)
%    and returns an N layer feed-forward backprop network.
%
%    NEWFF(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes optional inputs,
%      TFi - Transfer function of ith layer. Default is 'tansig' for
%            hidden layers, and 'purelin' for output layer.
%      BTF - Backprop network training function, default = 'trainlm'.
%      BLF - Backprop weight/bias learning function, default = 'learngdm'.
%      PF  - Performance function, default = 'mse'.
%      IPF - Row cell array of input processing functions.
%            Default is {'fixunknowns','remconstantrows','mapminmax'}.
%      OPF - Row cell array of output processing functions.
%            Default is {'remconstantrows','mapminmax'}.
%      DDF - Data division function, default = 'dividerand';
%    and returns an N layer feed-forward backprop network.
%
%    The transfer functions TF{i} can be any differentiable transfer
%    function such as TANSIG, LOGSIG, or PURELIN.
%
%    The training function BTF can be any of the backprop training
%    functions such as TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc.
%
%    *WARNING*: TRAINLM is the default training function because it
%    is very fast, but it requires a lot of memory to run.  If you get
%    an "out-of-memory" error when training try doing one of these:
%
%    (1) Slow TRAINLM training, but reduce memory requirements, by
%        setting NET.efficiency.memoryReduction to 2 or more. (See HELP TRAINLM.)
%    (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM.
%    (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG.
%
%    The learning function BLF can be either of the backpropagation
%    learning functions such as LEARNGD, or LEARNGDM.
%
%    The performance function can be any of the differentiable performance
%    functions such as MSE or MSEREG.
%
%  Examples
%
%    [inputs,targets] = simplefitdata;
%    net = newff(inputs,targets,20);
%    net = train(net,inputs,targets);
%    outputs = net(inputs);
%    errors = outputs - targets;
%    perf = perform(net,outputs,targets)
%
%  Algorithm
%
%    Feed-forward networks consist of Nl layers using the DOTPROD
%    weight function, NETSUM net input function, and the specified
%    transfer functions.
%
%    The first layer has weights coming from the input.  Each subsequent
%    layer has a weight coming from the previous layer.  All layers
%    have biases.  The last layer is the network output.
%
%    Each layer's weights and biases are initialized with INITNW.
%
%    Adaption is done with TRAINS which updates weights with the
%    specified learning function. Training is done with the specified
%    training function. Performance is measured according to the specified
%    performance function.
%
%  See also NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN, TRAINS


% Mark Beale, 11-31-97
% Copyright 1992-2010 The MathWorks, Inc.


%disp('NEWFF is no longer recommended. FEEDFORWARD is simpler and more efficient.');
% TODO - Recommendation function NNRECOMMEND


%% Boilerplate Code - Same for all Network Functions


persistent INFO;
if (nargin < 1), error(message('nnet:Args:NotEnough')); end
in1 = varargin{1};
if ischar(in1)
  switch in1
    case 'info',
      if isempty(INFO), INFO = get_info; end
      out1 = INFO;
  end
else
  out1 = create_network(varargin{:});
end


%% Boilerplate Code - Same for all Network Functions


%%
function info = get_info


info.function = mfilename;
info.name = 'Feed-Forward';
info.description = nnfcn.get_mhelp_title(mfilename);
info.type = 'nntype.network_fcn';
info.version = 6.0;


%%
function net = create_network(varargin)


if nargin < 2, error(message('nnet:Args:NotEnough')), end


v1 = varargin{1};
if isa(v1,'cell'), v1 = cell2mat(v1); end
v2 = varargin{2};
if nargin > 2, v3 = varargin{3}; end


if (nargin<= 6) && (size(v1,2)==2) && (~iscell(v2)) && (size(v2,1)==1) && ((nargin<3)||iscell(v3))
  nnerr.obs_use(mfilename,['See help for ' upper(mfilename) ' to update calls to the new argument list.']);
  net = new_5p0(varargin{:});
else
  net = new_5p1(varargin{:});
end


%=============================================================
function net = new_5p1(p,t,s,tf,btf,blf,pf,ipf,tpf,ddf)


if nargin < 2, error(message('nnet:Args:NotEnough')), end


% Defaults
if (nargin < 3), s = []; end
if (nargin < 4), tf = {}; end
if (nargin < 5), btf = 'trainlm'; end
if (nargin < 6), blf = 'learngdm'; end
if (nargin < 7), pf = 'mse'; end
if (nargin < 8), ipf = {'fixunknowns','removeconstantrows','mapminmax'}; end
if (nargin < 9), tpf = {'removeconstantrows','mapminmax'}; end
if (nargin < 10), ddf = 'dividerand'; end


% Format
if isa(p,'cell'), p = cell2mat(p); end
if isa(t,'cell'), t = cell2mat(t); end


% Error checking
if ~(isa(p,'double') || isreal(p)  || islogical(t))
  error(message('nnet:NNet:XNotLegal'))
end
if ~(isa(t,'double') || isreal(t) || islogical(t))
  error(message('nnet:NNet:TNotLegal'))
end
if isa(s,'cell')
  if (size(s,1) ~= 1)
    error(message('nnet:NNet:LayerSizes'))
  end
  for i=1:length(s)
    si = s{i};
    if ~isa(si,'double') || ~isreal(si) || any(size(si) ~= 1) || any(si<1) || any(round(si) ~= si)
      error(message('nnet:NNet:LayerSizes'))
    end
  end
  s = cell2mat(s);
end
if (~isa(s,'double')) || ~isreal(s) || (size(s,1) > 1) || any(s<1) || any(round(s) ~= s)
  error(message('nnet:NNet:LayerSizes'))
end


% Architecture
Nl = length(s)+1;
net = network;
net.numInputs = 1;
net.numLayers = Nl;
net.biasConnect = ones(Nl,1);
net.inputConnect(1,1) = 1;
[j,i] = meshgrid(1:Nl,1:Nl);
net.layerConnect = (j == (i-1));
net.outputConnect(Nl) = 1;


% Simulation
net.inputs{1}.processFcns = ipf;
for i=1:Nl
  if (i < Nl)
    net.layers{i}.size = s(i);
    if (Nl == 2)
      net.layers{i}.name = 'Hidden Layer';
    else
      net.layers{i}.name = ['Hidden Layer ' num2str(i)];
    end
  else
    net.layers{i}.name = 'Output Layer';
  end
  if (length(tf) < i) || all(isnan(tf{i}))
    if (i

你可能感兴趣的:(matlab,BP神经网络,matlab源码)